IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002228.html
   My bibliography  Save this article

Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities

Author

Listed:
  • Zhang, Kai
  • Wang, Dajiang
  • Chen, Min
  • Zhu, Rui
  • Zhang, Fan
  • Zhong, Teng
  • Qian, Zhen
  • Wang, Yazhou
  • Li, Hengyue
  • Wang, Yijie
  • Lü, Guonian
  • Yan, Jinyue

Abstract

Photovoltaic noise barriers (PVNBs) have the potential to contribute to sustainable urban development by increasing the supply of renewable energy to cities while decreasing traffic noise pollution. However, estimating the power generation of PVNBs at the city or national scale remains a challenge due to the complexities of the urban environment and the difficulties associated with collecting data on road noise barriers (RNBs) and radiation. This study used RNBs, 2.5-dimensional (2.5D) buildings, and hourly time resolution radiation data, to estimate the power generation of PVNBs in 52 of China's major cities. First, hourly building shadows were estimated for each day of the year, covering the period from sunrise to sunset, to identify areas of RNB that are shaded at any given time. Second, hourly clear-sky radiation data were collected and corrected using a radiation correction model to simulate real weather radiation. Finally, utilizing an inclined surface radiation estimation model, the photovoltaic (PV) potential both inside and outside RNBs affected by building shadows was assessed. Subsequently, the power generation of PVNB was estimated based on parameters of mainstream PV systems in the market. The results show that the RNB mileage in 52 selected cities represents 87.7% of China's total RNB mileage. Building shadows often result in a radiation loss of approximately 30% for RNBs reception. The installed capacity and annual power generation of PVNBs in all investigated cities are 2.04 GW and 690.74 GWh, respectively. This study estimates the comprehensive PV potential of potentially exploitable PVNBs in China, offering essential scientific insights to inform and facilitate the strategic development of PVNB projects at both the national and municipal levels.

Suggested Citation

  • Zhang, Kai & Wang, Dajiang & Chen, Min & Zhu, Rui & Zhang, Fan & Zhong, Teng & Qian, Zhen & Wang, Yazhou & Li, Hengyue & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2024. "Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002228
    DOI: 10.1016/j.apenergy.2024.122839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    2. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    3. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    4. Mrówczyńska, Maria & Skiba, Marta & Bazan-Krzywoszańska, Anna & Sztubecka, Małgorzata, 2020. "Household standards and socio-economic aspects as a factor determining energy consumption in the city," Applied Energy, Elsevier, vol. 264(C).
    5. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    6. Kanellis, Michalis & de Jong, Minne M. & Slooff, Lenneke & Debije, Michael G., 2017. "The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier," Renewable Energy, Elsevier, vol. 103(C), pages 647-652.
    7. Gu, Minan & Liu, Yongsheng & Yang, Jingjing & Peng, Lin & Zhao, Chunjiang & Yang, Zhenglong & Yang, Jinhuan & Fang, Wengjian & Fang, Jin & Zhao, Zhenjie, 2012. "Estimation of environmental effect of PVNB installed along a metro line in China," Renewable Energy, Elsevier, vol. 45(C), pages 237-244.
    8. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    9. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Debije, Michael G. & Tzikas, Chris & de Jong, Minne M. & Kanellis, Michalis & Slooff, Lenneke H., 2018. "The solar noise barrier project: 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels," Renewable Energy, Elsevier, vol. 116(PA), pages 335-343.
    11. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    12. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
    13. Berwal, Anil K. & Kumar, Sanjay & Kumari, Nisha & Kumar, Virender & Haleem, Abid, 2017. "Design and analysis of rooftop grid tied 50kW capacity Solar Photovoltaic (SPV) power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1288-1299.
    14. De Schepper, Ellen & Van Passel, Steven & Manca, Jean & Thewys, Theo, 2012. "Combining photovoltaics and sound barriers – A feasibility study," Renewable Energy, Elsevier, vol. 46(C), pages 297-303.
    15. Luo, Guo-liang & Long, Cheng-feng & Wei, Xiao & Tang, Wen-jun, 2016. "Financing risks involved in distributed PV power generation in China and analysis of countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 93-101.
    16. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    17. Zhang, Kai & Chen, Min & Yang, Yue & Zhong, Teng & Zhu, Rui & Zhang, Fan & Qian, Zhen & Lü, Guonian & Yan, Jinyue, 2022. "Quantifying the photovoltaic potential of highways in China," Applied Energy, Elsevier, vol. 324(C).
    18. Zhu, Rui & Cheng, Cheng & Santi, Paolo & Chen, Min & Zhang, Xiaohu & Mazzarello, Martina & Wong, Man Sing & Ratti, Carlo, 2022. "Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand," Applied Energy, Elsevier, vol. 316(C).
    19. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    2. Jiang, Wei & Zhang, Shuo & Wang, Teng & Zhang, Yufei & Sha, Aimin & Xiao, Jingjing & Yuan, Dongdong, 2024. "Evaluation method for the availability of solar energy resources in road areas before route corridor planning," Applied Energy, Elsevier, vol. 356(C).
    3. Zhang, Kai & Chen, Min & Yang, Yue & Zhong, Teng & Zhu, Rui & Zhang, Fan & Qian, Zhen & Lü, Guonian & Yan, Jinyue, 2022. "Quantifying the photovoltaic potential of highways in China," Applied Energy, Elsevier, vol. 324(C).
    4. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    5. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    6. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    7. Bartłomiej Milewicz & Magdalena Bogacka & Krzysztof Pikoń, 2021. "Influence of Solar Concentrator in the Form of Luminescent PMMA on the Performance of a Silicon Cell," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    8. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    9. Xu, Li & Zhang, Qin & Wang, Keying & Shi, Xunpeng, 2020. "Subsidies, loans, and companies' performance: evidence from China's photovoltaic industry," Applied Energy, Elsevier, vol. 260(C).
    10. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    11. Zhiyong Tian & Bengt Perers & Simon Furbo & Jianhua Fan & Jie Deng & Janne Dragsted, 2018. "A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions," Energies, MDPI, vol. 11(5), pages 1-19, May.
    12. Wang, Yu & He, Jijiang & Chen, Wenying, 2021. "Distributed solar photovoltaic development potential and a roadmap at the city level in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    14. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    16. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    17. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
    18. Ye, Yuxuan & Zhu, Rui & Yan, Jinyue & Lu, Lin & Wong, Man Sing & Luo, Wei & Chen, Min & Zhang, Fan & You, Linlin & Wang, Yafei & Qin, Zheng, 2023. "Planning the installation of building-integrated photovoltaic shading devices: A GIS-based spatiotemporal analysis and optimization approach," Renewable Energy, Elsevier, vol. 216(C).
    19. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    20. Wang, Yuan & Zhu, Xin & Zhang, Tingsheng & Bano, Shehar & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping, 2018. "A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film," Applied Energy, Elsevier, vol. 230(C), pages 52-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.