IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924020853.html
   My bibliography  Save this article

DOMES: A general optimization method for the integrated design of energy conversion, storage and networks in multi-energy systems

Author

Listed:
  • Dal Cin, Enrico
  • Carraro, Gianluca
  • Volpato, Gabriele
  • Lazzaretto, Andrea
  • Tsatsaronis, George

Abstract

A realistic pursuit of decarbonization targets requires planning and designing new configurations of “multi-energy systems” to identify the optimal number, type, location and size of the energy conversion and storage units and their interconnections with the end users of different forms of energy. The common approach in the literature is to treat the optimization problem of energy conversion and storage separately from that of energy networks, and the few attempts to address the two problems simultaneously have led to oversimplifications due to the very large number of decision variables involved. To fill this gap, this study introduces “DOMES” (Design Of Multi-Energy Systems), a general optimization method for the integrated synthesis, design and operation of a multi-energy system in its entirety. With the goal of minimizing costs and reducing carbon emissions, DOMES can simultaneously find the location, type, size and operation of the energy conversion and storage units, as well as the topology and capacity of the energy networks, to meet the energy demand of the end users. To make the problem computationally solvable while ensuring sufficiently good accuracy of the solution, mathematical techniques such as linearization, problem decomposition and time series aggregation have been applied. DOMES is capable of finding the global optimum of the problem either while planning new systems from scratch or when starting from existing systems. Considering a densely populated urban district, the investment costs of renewable conversion plants outweigh those of the district heating network and electric microgrid, which together account for less than 10 % of the total. A much higher economic impact of energy networks is expected when considering larger, less densely populated areas.

Suggested Citation

  • Dal Cin, Enrico & Carraro, Gianluca & Volpato, Gabriele & Lazzaretto, Andrea & Tsatsaronis, George, 2025. "DOMES: A general optimization method for the integrated design of energy conversion, storage and networks in multi-energy systems," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020853
    DOI: 10.1016/j.apenergy.2024.124702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio Rech, 2019. "Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations," Energies, MDPI, vol. 12(7), pages 1-36, April.
    2. Guo, Jiacheng & Zhang, Peiwen & Wu, Di & Liu, Zhijian & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua, 2022. "Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting," Energy, Elsevier, vol. 239(PC).
    3. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    4. Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
    5. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    6. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    7. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    8. Girardin, Luc & Marechal, François & Dubuis, Matthias & Calame-Darbellay, Nicole & Favrat, Daniel, 2010. "EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas," Energy, Elsevier, vol. 35(2), pages 830-840.
    9. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    10. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    11. Rech, S. & Lazzaretto, A., 2018. "Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system," Energy, Elsevier, vol. 147(C), pages 742-756.
    12. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    13. Casisi, M. & Pinamonti, P. & Reini, M., 2009. "Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems," Energy, Elsevier, vol. 34(12), pages 2175-2183.
    14. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    15. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
    16. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    17. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    18. Toffolo, Andrea, 2014. "A synthesis/design optimization algorithm for Rankine cycle based energy systems," Energy, Elsevier, vol. 66(C), pages 115-127.
    19. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    20. Mehleri, E.D. & Sarimveis, H. & Markatos, N.C. & Papageorgiou, L.G., 2013. "Optimal design and operation of distributed energy systems: Application to Greek residential sector," Renewable Energy, Elsevier, vol. 51(C), pages 331-342.
    21. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    22. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    23. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    24. Danieli, Piero & Carraro, Gianluca & Volpato, Gabriele & Cin, Enrico Dal & Lazzaretto, Andrea & Masi, Massimo, 2024. "Guidelines for minimum cost transition planning to a 100% renewable multi-regional energy system," Applied Energy, Elsevier, vol. 357(C).
    25. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
    26. Wang, Ligang & Lampe, Matthias & Voll, Philip & Yang, Yongping & Bardow, André, 2016. "Multi-objective superstructure-free synthesis and optimization of thermal power plants," Energy, Elsevier, vol. 116(P1), pages 1104-1116.
    27. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    28. Lerbinger, Alicia & Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof, 2023. "Optimal decarbonization strategies for existing districts considering energy systems and retrofits," Applied Energy, Elsevier, vol. 352(C).
    29. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    30. Keirstead, James & Samsatli, Nouri & Shah, Nilay & Weber, Céline, 2012. "The impact of CHP (combined heat and power) planning restrictions on the efficiency of urban energy systems," Energy, Elsevier, vol. 41(1), pages 93-103.
    31. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    32. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Enrico Dal Cin & Gabriele Volpato, 2023. "Is Banning Fossil-Fueled Internal Combustion Engines the First Step in a Realistic Transition to a 100% RES Share?," Energies, MDPI, vol. 16(15), pages 1-18, July.
    33. Voll, Philip & Lampe, Matthias & Wrobel, Gregor & Bardow, André, 2012. "Superstructure-free synthesis and optimization of distributed industrial energy supply systems," Energy, Elsevier, vol. 45(1), pages 424-435.
    34. Delangle, Axelle & Lambert, Romain S.C. & Shah, Nilay & Acha, Salvador & Markides, Christos N., 2017. "Modelling and optimising the marginal expansion of an existing district heating network," Energy, Elsevier, vol. 140(P1), pages 209-223.
    35. Dimopoulos, George G. & Kougioufas, Aristotelis V. & Frangopoulos, Christos A., 2008. "Synthesis, design and operation optimization of a marine energy system," Energy, Elsevier, vol. 33(2), pages 180-188.
    36. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    37. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.
    38. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    39. Wang, Ligang & Voll, Philip & Lampe, Matthias & Yang, Yongping & Bardow, André, 2015. "Superstructure-free synthesis and optimization of thermal power plants," Energy, Elsevier, vol. 91(C), pages 700-711.
    40. Comodi, Gabriele & Bartolini, Andrea & Carducci, Francesco & Nagaranjan, Balamurugan & Romagnoli, Alessandro, 2019. "Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Bacci & Enrico Dal Cin & Gianluca Carraro & Sergio Rech & Andrea Lazzaretto, 2025. "Economic–Energy–Environmental Optimization of a Multi-Energy System in a University District," Energies, MDPI, vol. 18(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    2. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    3. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    4. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    5. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    6. Jalil-Vega, Francisca & Hawkes, Adam D., 2018. "The effect of spatial resolution on outcomes from energy systems modelling of heat decarbonisation," Energy, Elsevier, vol. 155(C), pages 339-350.
    7. Luca Bacci & Enrico Dal Cin & Gianluca Carraro & Sergio Rech & Andrea Lazzaretto, 2025. "Economic–Energy–Environmental Optimization of a Multi-Energy System in a University District," Energies, MDPI, vol. 18(2), pages 1-26, January.
    8. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    9. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    10. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    11. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    12. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    13. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    14. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    15. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
    16. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    17. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    18. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    19. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.