IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3581-d268740.html
   My bibliography  Save this article

Research on DFIG-ES System to Enhance the Fast-Frequency Response Capability of Wind Farms

Author

Listed:
  • Sijia Tu

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Bingda Zhang

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Xianglong Jin

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

With the increasing penetration of wind power generation, the frequency regulation burden on conventional synchronous generators has become heavier, as the rotor speed of doubly-fed induction generator (DFIG) is decoupled with the system frequency. As the frequency regulation capability of wind farms is an urgent appeal, the inertia control of DFIG has been studied by many researchers and the energy storage (ES) system has been installed in wind farms to respond to frequency deviation with doubly-fed induction generators (DFIGs). In view of the high allocation and maintenance cost of the ES system, the capacity allocation scheme of the ES system—especially for fast-frequency response—is proposed in this paper. The capacity allocation principle was to make the wind farm possess the same potential inertial energy as that of synchronous generators set with equal rated power. After the capacity of the ES system was defined, the coordinated control strategy of the DFIG-ES system with consideration of wind speed was proposed in order to improve the frequency nadir during fast-frequency response. The overall power reference of the DFIG-ES system was calculated on the basis of the frequency response characteristic of synchronous generators. In particular, once the power reference of DFIG was determined, a novel virtual inertia control method of DFIG was put forward to release rotational kinetic energy and produce power surge by means of continuously modifying the proportional coefficient of maximum power point tracking (MPPT) control. During the deceleration period, the power reference smoothly decreased with the rotor speed until it reached the MPPT curve, wherein the rotor speed could rapidly recover by virtue of wind power so that the secondary frequency drop could be avoided. Afterwards, a fuzzy logic controller (FLC) was designed to distribute output power between the DFIG and ES system according to the rotor speed of DFIG and S o C of ES; thus the scheme enabled the DFIG-ES system to respond to frequency deviation in most cases while preventing the secondary frequency drop and prolonging the service life of the DFIG-ES system. Finally, the test results, which were based on the simulation system on MATLAB/Simulink software, verified the effectiveness of the proposed control strategy by comparison with other control methods and verified the rationality of the designed fuzzy logic controller and proposed capacity allocation scheme of the ES system.

Suggested Citation

  • Sijia Tu & Bingda Zhang & Xianglong Jin, 2019. "Research on DFIG-ES System to Enhance the Fast-Frequency Response Capability of Wind Farms," Energies, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3581-:d:268740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nhung Nguyen Hong & Yosuke Nakanishi, 2019. "Optimal Scheduling of an Isolated Wind-Diesel-Energy Storage System Considering Fast Frequency Response and Forecast Error," Energies, MDPI, vol. 12(5), pages 1-20, March.
    2. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    3. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicong Wang & Chang Liu & Zhiwei Liu & Tingtao Wang & Fangchao Ke & Dongjun Yang & Dongyin Zhang & Shihong Miao, 2023. "A Hierarchical Cooperative Frequency Regulation Control Strategy of Wind-Storage-Load in a Microgrid Based on Model Prediction," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Dezhi Ma & Wenyi Li, 2022. "Wind-Storage Combined Virtual Inertial Control Based on Quantization and Regulation Decoupling of Active Power Increments," Energies, MDPI, vol. 15(14), pages 1-20, July.
    3. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    4. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
    5. Jianghong Chen & Teng Yuan & Xuelian Li & Weiliang Li & Ximu Wang, 2023. "Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control," Energies, MDPI, vol. 16(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    2. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    3. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    4. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    5. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    7. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    8. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    9. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    10. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    11. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    13. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    14. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    15. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    17. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    18. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    19. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2020. "Numerical investigation into the energy extraction characteristics of 3D self-induced oscillating foil," Renewable Energy, Elsevier, vol. 148(C), pages 60-71.
    20. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3581-:d:268740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.