IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6270-d452581.html
   My bibliography  Save this article

Transition from Electromechanical Dynamics to Quasi-Electromechanical Dynamics Caused by Participation of Full Converter-Based Wind Power Generation

Author

Listed:
  • Jianqiang Luo

    (Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
    Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China)

  • Siqi Bu

    (Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
    Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China)

  • Jiebei Zhu

    (School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract

Previous studies generally consider that the full converter-based wind power generation (FCWG) is a “decoupled” power source from the grid, which hardly participates in electromechanical oscillations. However, it was found recently that strong interaction could be induced which might incur severe resonance incidents in the electromechanical dynamic timescale. In this paper, the participation of FCWG in electromechanical dynamics is extensively investigated, and particularly, an unusual transition of the electromechanical oscillation mode (EOM) is uncovered for the first time. The detailed mathematical models of the open-loop and closed-loop power systems are firstly established, and modal analysis is employed to quantify the FCWG participation in electromechanical dynamics, with two new mode identification criteria, i.e., FCWG dynamics correlation ratio (FDCR) and quasi-electromechanical loop correlation ratio (QELCR). On this basis, the impact of different wind penetration levels and controller parameter settings on the participation of FCWG is investigated. It is revealed that if an FCWG oscillation mode (FOM) has a similar oscillation frequency to the system EOMs, there is a high possibility to induce strong interactions between FCWG dynamics and system electromechanical dynamics of the external power systems. In this circumstance, an interesting phenomenon may occur that an EOM may be dominated by FCWG dynamics, and hence is transformed into a quasi-EOM, which actively involves the participation of FCWG quasi-electromechanical state variables.

Suggested Citation

  • Jianqiang Luo & Siqi Bu & Jiebei Zhu, 2020. "Transition from Electromechanical Dynamics to Quasi-Electromechanical Dynamics Caused by Participation of Full Converter-Based Wind Power Generation," Energies, MDPI, vol. 13(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6270-:d:452581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, S.W. & Bu, S.Q. & Zhang, X. & Xu, Y. & Zhou, B. & Zhu, J.B., 2018. "Model reduction strategy of doubly-fed induction generator-based wind farms for power system small-signal rotor angle stability analysis," Applied Energy, Elsevier, vol. 222(C), pages 608-620.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianqiang Luo & Yiqing Zou & Siqi Bu & Ulas Karaagac, 2021. "Converter-Driven Stability Analysis of Power Systems Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-20, July.
    2. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Li, Zhengshuo & Wang, Guangrui, 2021. "Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization," Applied Energy, Elsevier, vol. 298(C).
    2. Zong, Haoxiang & Lyu, Jing & Wang, Xiao & Zhang, Chen & Zhang, Ruifang & Cai, Xu, 2021. "Grey box aggregation modeling of wind farm for wideband oscillations analysis," Applied Energy, Elsevier, vol. 283(C).
    3. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    5. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    6. Han, Jiangbei & Liu, Chengxi, 2023. "Performance evaluation of SSCI damping controller based on the elastic energy equivalent system," Applied Energy, Elsevier, vol. 331(C).
    7. Fu, Xiaopeng & Wang, Chengshan & Li, Peng & Wang, Liwei, 2019. "Exponential integration algorithm for large-scale wind farm simulation with Krylov subspace acceleration," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6270-:d:452581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.