IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2780-d365738.html
   My bibliography  Save this article

A Fast-Algorithmic Probabilistic Evaluation on Regional Rate of Change of Frequency (RoCoF) for Operational Planning of High Renewable Penetrated Power Systems

Author

Listed:
  • Jiaxin Wen

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Siqi Bu

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Bowen Zhou

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Qiyu Chen

    (Power System Department, China Electric Power Research Institute, Haidian District, Beijing 100192, China)

  • Dongsheng Yang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

The high rate of change of frequency (RoCoF) issue incurred by the integration of renewable energy sources (RESs) into a modern power system significantly threatens the grid security, and thus needs to be carefully examined in the operational planning. However, severe fluctuation of regional frequency responses concerned by system operators could be concealed by the conventional assessment based on aggregated system frequency response. Moreover, the occurrence probability of a high RoCoF issue is actually a very vital factor during the system planner’s decision-making. Therefore, a fast-algorithmic evaluation method is proposed to determine the probabilistic distribution of regional RoCoF for the operational planning of a RES penetrated power system. First, an analytical sensitivity (AS) that quantifies the relationship between the regional RoCoF and the stochastic output of the RES is derived based on the generator and network information. Then a linear sensitivity-based analytical method (LSM) is established to calculate the regional RoCoF and the corresponding probabilistic distribution, which takes much less computational time when comparing with the scenario-based simulation (SBS) and involves much less complicated calculation procedure when comparing with the cumulant-based method (CBM). The effectiveness and efficiency of the proposed method are verified in a modified 16-machine 5-area IEEE benchmark system by numerical SBS and analytical CBM.

Suggested Citation

  • Jiaxin Wen & Siqi Bu & Bowen Zhou & Qiyu Chen & Dongsheng Yang, 2020. "A Fast-Algorithmic Probabilistic Evaluation on Regional Rate of Change of Frequency (RoCoF) for Operational Planning of High Renewable Penetrated Power Systems," Energies, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2780-:d:365738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Xu, Da & Chan, Ka Wing & Li, Canbing & Cao, Yijia & Bu, Siqi, 2017. "A two-stage framework for multiobjective energy management in distribution networks with a high penetration of wind energy," Energy, Elsevier, vol. 135(C), pages 754-766.
    2. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    3. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    4. Huang, Sunhua & Zhou, Bin & Bu, Siqi & Li, Canbing & Zhang, Cong & Wang, Huaizhi & Wang, Tao, 2019. "Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system," Renewable Energy, Elsevier, vol. 139(C), pages 447-458.
    5. Woo Yeong Choi & Kyung Soo Kook & Ga Ram Yu, 2019. "Control Strategy of BESS for Providing Both Virtual Inertia and Primary Frequency Response in the Korean Power System," Energies, MDPI, vol. 12(21), pages 1-17, October.
    6. Alejandro Rubio & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2020. "Determination of the Required Power Response of Inverters to Provide Fast Frequency Support in Power Systems with Low Synchronous Inertia," Energies, MDPI, vol. 13(4), pages 1-21, February.
    7. Huadian Xu & Jianhui Su & Ning Liu & Yong Shi, 2018. "A Grid-Supporting Photovoltaic System Implemented by a VSG with Energy Storage," Energies, MDPI, vol. 11(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
    2. Xiaoyu Deng & Ruo Mo & Pengliang Wang & Junru Chen & Dongliang Nan & Muyang Liu, 2023. "Review of RoCoF Estimation Techniques for Low-Inertia Power Systems," Energies, MDPI, vol. 16(9), pages 1-19, April.
    3. Feng Guo & David Schlipf, 2021. "A Spectral Model of Grid Frequency for Assessing the Impact of Inertia Response on Wind Turbine Dynamics," Energies, MDPI, vol. 14(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    2. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    3. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    4. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    6. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    9. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    10. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    11. Abhimanyu Kaushal & Dirk Van Hertem, 2019. "An Overview of Ancillary Services and HVDC Systems in European Context," Energies, MDPI, vol. 12(18), pages 1-20, September.
    12. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    13. Florian Errigo & Leandro De Oliveira Porto & Florent Morel, 2022. "Design Methodology Based on Prebuilt Components for Modular Multilevel Converters with Partial Integration of Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-18, July.
    14. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    15. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    16. Okulov, V.L. & Naumov, I.V. & Kabardin, I.K. & Litvinov, I.V. & Markovich, D.M. & Mikkelsen, R.F. & Sørensen, J.N. & Alekseenko, S.V. & Wood, D.H., 2021. "Experiments on line arrays of horizontal-axis hydroturbines," Renewable Energy, Elsevier, vol. 163(C), pages 15-21.
    17. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.
    18. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    19. Yu-Chen Lin & Valentina Emilia Balas & Marius Mircea Balas & Jian-Zhang Peng, 2019. "Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Hydro-Turbine Governor Design," Energies, MDPI, vol. 13(1), pages 1-22, December.
    20. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2780-:d:365738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.