IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3389-d571311.html
   My bibliography  Save this article

Adaptive Control Structure with Neural Data Processing Applied for Electrical Drive with Elastic Shaft

Author

Listed:
  • Marcin Kamiński

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland)

  • Krzysztof Szabat

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland)

Abstract

This paper presents issues related to the adaptive control of the drive system with an elastic clutch connecting the main motor and the load machine. Firstly, the problems and the main algorithms often implemented for the mentioned object are analyzed. Then, the control concept based on the RNN (recurrent neural network) for the drive system with the flexible coupling is thoroughly described. For this purpose, an adaptive model inspired by the Elman model is selected, which is related to internal feedback in the neural network. The indicated feature improves the processing of dynamic signals. During the design process, for the selection of constant coefficients of the controller, the PSO (particle swarm optimizer) is applied. Moreover, in order to obtain better dynamic properties and improve work in real conditions, one model based on the ADALINE (adaptive linear neuron) is introduced into the structure. Details of the algorithm used for the weights’ adaptation are presented (including stability analysis) to perform the shaft torque signal filtering. The effectiveness of the proposed approach is examined through simulation and experimental studies.

Suggested Citation

  • Marcin Kamiński & Krzysztof Szabat, 2021. "Adaptive Control Structure with Neural Data Processing Applied for Electrical Drive with Elastic Shaft," Energies, MDPI, vol. 14(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3389-:d:571311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narongrit Pimkumwong & Ming-Shyan Wang, 2018. "Online Speed Estimation Using Artificial Neural Network for Speed Sensorless Direct Torque Control of Induction Motor based on Constant V/F Control Technique," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Rafal Szczepanski & Marcin Kaminski & Tomasz Tarczewski, 2020. "Auto-Tuning Process of State Feedback Speed Controller Applied for Two-Mass System," Energies, MDPI, vol. 13(12), pages 1-16, June.
    3. Krzysztof Szabat & Karol Wróbel & Krzysztof Dróżdż & Dariusz Janiszewski & Tomasz Pajchrowski & Adrian Wójcik, 2020. "A Fuzzy Unscented Kalman Filter in the Adaptive Control System of a Drive System with a Flexible Joint," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Fardila Mohd Zaihidee & Saad Mekhilef & Marizan Mubin, 2019. "Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review," Energies, MDPI, vol. 12(9), pages 1-27, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Kabziński & Przemysław Mosiołek, 2021. "Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness," Energies, MDPI, vol. 14(17), pages 1-23, September.
    2. Jacek Kabziński & Przemysław Mosiołek, 2022. "Observer-Based, Robust Position Tracking in Two-Mass Drive System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Marcin Kaminski & Tomasz Tarczewski, 2023. "Neural Network Applications in Electrical Drives—Trends in Control, Estimation, Diagnostics, and Construction," Energies, MDPI, vol. 16(11), pages 1-25, May.
    4. Mateusz Malarczyk & Jules-Raymond Tapamo & Marcin Kaminski, 2022. "Application of Neural Data Processing in Autonomous Model Platform—A Complex Review of Solutions, Design and Implementation," Energies, MDPI, vol. 15(13), pages 1-22, June.
    5. Krzysztof Szabat & Tomasz Pajchrowski & Tomasz Tarczewski, 2021. "Modern Electrical Drives: Trends, Problems, and Challenges," Energies, MDPI, vol. 15(1), pages 1-4, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Wróbel & Kacper Śleszycki & Krzysztof Szabat & Seiichiro Katsura, 2021. "Application of Multilayer Observer for a Drive System with Flexibility," Energies, MDPI, vol. 14(24), pages 1-19, December.
    2. Konrad Urbanski & Dariusz Janiszewski, 2021. "Position Estimation at Zero Speed for PMSMs Using Artificial Neural Networks," Energies, MDPI, vol. 14(23), pages 1-17, December.
    3. Marcin Kaminski & Tomasz Tarczewski, 2023. "Neural Network Applications in Electrical Drives—Trends in Control, Estimation, Diagnostics, and Construction," Energies, MDPI, vol. 16(11), pages 1-25, May.
    4. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    5. Karol Wróbel & Kacper Śleszycki & Amanuel Haftu Kahsay & Krzysztof Szabat & Seiichiro Katsura, 2023. "Robust Speed Control of Uncertain Two-Mass System," Energies, MDPI, vol. 16(17), pages 1-17, August.
    6. Hassam Muazzam & Mohamad Khairi Ishak & Athar Hanif & Ali Arshad Uppal & AI Bhatti & Nor Ashidi Mat Isa, 2022. "Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-18, February.
    7. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    8. Hani Albalawi & Sherif A. Zaid & Mohmed E. El-Shimy & Ahmed M. Kassem, 2023. "Ant Colony Optimized Controller for Fast Direct Torque Control of Induction Motor," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    9. Jiachun Lin & Yuteng Zhao & Pan Zhang & Junjie Wang & Hao Su, 2021. "Research on Compound Sliding Mode Control of a Permanent Magnet Synchronous Motor in Electromechanical Actuators," Energies, MDPI, vol. 14(21), pages 1-17, November.
    10. Xiaoyu Deng & Ruo Mo & Pengliang Wang & Junru Chen & Dongliang Nan & Muyang Liu, 2023. "Review of RoCoF Estimation Techniques for Low-Inertia Power Systems," Energies, MDPI, vol. 16(9), pages 1-19, April.
    11. Branislav Dobrucky & Slavomir Kascak & Michal Frivaldsky & Michal Prazenica, 2021. "Determination and Compensation of Non-Active Torques for Parallel HEV Using PMSM/IM Motor(s)," Energies, MDPI, vol. 14(10), pages 1-26, May.
    12. Dominik Łuczak, 2021. "Nonlinear Identification with Constraints in Frequency Domain of Electric Direct Drive with Multi-Resonant Mechanical Part," Energies, MDPI, vol. 14(21), pages 1-12, November.
    13. Mingyuan Hu & Hyeongki Ahn & Yoonuh Chung & Kwanho You, 2023. "Speed Regulation for PMSM with Super-Twisting Sliding-Mode Controller via Disturbance Observer," Mathematics, MDPI, vol. 11(7), pages 1-15, March.
    14. Radoslaw Stanislawski & Jules-Raymond Tapamo & Marcin Kaminski, 2023. "Virtual Signal Calculation Using Radial Neural Model Applied in a State Controller of a Two-Mass System," Energies, MDPI, vol. 16(15), pages 1-23, July.
    15. Kifayat Ullah & Jaroslaw Guzinski & Adeel Feroz Mirza, 2022. "Critical Review on Robust Speed Control Techniques for Permanent Magnet Synchronous Motor (PMSM) Speed Regulation," Energies, MDPI, vol. 15(3), pages 1-13, February.
    16. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    17. Abhinandan Routray & Yiza Srikanth Reddy & Sung-ho Hur, 2023. "Predictive Control of a Wind Turbine Based on Neural Network-Based Wind Speed Estimation," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    18. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    19. Muhammad Usama & Jaehong Kim, 2021. "Low-Speed Transient and Steady-State Performance Analysis of IPMSM for Nonlinear Speed Regulator with Effective Compensation Scheme," Energies, MDPI, vol. 14(20), pages 1-16, October.
    20. Roland Kasper & Dmytro Golovakha, 2020. "Combined Optimal Torque Feedforward and Modal Current Feedback Control for Low Inductance PM Motors," Energies, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3389-:d:571311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.