IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5475-d627730.html
   My bibliography  Save this article

Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness

Author

Listed:
  • Jacek Kabziński

    (Institute of Automatic Control, Lodz University of Technology, 90-924 Lodz, Poland)

  • Przemysław Mosiołek

    (Institute of Automatic Control, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

In numerous electric drive applications, the mechanical phenomena in the velocity or position control loop determine real difficulties and challenges for the control system. So-called two-mass drive systems with a flexible shaft are the most important example of this situation. The problem becomes even more difficult if the characteristics of torque transmission along the shaft are nonlinear, nonlinear friction is present, and the plant parameters are unknown, as it happens in numerous robotic systems. A novel adaptive controller is derived for such a system. The recurrent design procedure is based on proper modifications of the adaptive backstepping scheme, including non-strict-feedback plant application, tuning functions to exclude controller overparameterization, robust adaptive laws, proper means to avoid controller complexity explosion, and a nonlinear PI controller in the initial loop to minimize quasi-steady-state tracking error. The closed-loop system uniform ultimate boundedness is proven using Lyapunov techniques and the design and tuning procedures are described. The attractive features of the obtained drive, including the robustness against the violation of assumptions, are presented using several examples.

Suggested Citation

  • Jacek Kabziński & Przemysław Mosiołek, 2021. "Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness," Energies, MDPI, vol. 14(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5475-:d:627730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andriy Lozynskyy & Andriy Chaban & Tomasz Perzyński & Andrzej Szafraniec & Lidiia Kasha, 2021. "Application of Fractional-Order Calculus to Improve the Mathematical Model of a Two-Mass System with a Long Shaft," Energies, MDPI, vol. 14(7), pages 1-15, March.
    2. Andrzej Popenda & Marek Lis & Marcjan Nowak & Krzysztof Blecharz, 2020. "Mathematical Modelling of Drive System with an Elastic Coupling Based on Formal Analogy between the Transmission Shaft and the Electric Transmission Line," Energies, MDPI, vol. 13(5), pages 1-14, March.
    3. Ali Awada & Rafic Younes & Adrian Ilinca, 2021. "Review of Vibration Control Methods for Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-35, May.
    4. Marcin Kamiński & Krzysztof Szabat, 2021. "Adaptive Control Structure with Neural Data Processing Applied for Electrical Drive with Elastic Shaft," Energies, MDPI, vol. 14(12), pages 1-26, June.
    5. Andriy Chaban & Marek Lis & Andrzej Szafraniec & Radoslaw Jedynak, 2020. "Application of Genetic Algorithm Elements to Modelling of Rotation Processes in Motion Transmission Including a Long Shaft," Energies, MDPI, vol. 14(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Kabziński & Przemysław Mosiołek, 2022. "Observer-Based, Robust Position Tracking in Two-Mass Drive System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    2. Andrzej Popenda & Andrzej Szafraniec & Andriy Chaban, 2021. "Dynamics of Electromechanical Systems Containing Long Elastic Couplings and Safety of Their Operation," Energies, MDPI, vol. 14(23), pages 1-18, November.
    3. Andriy Chaban & Zbigniew Łukasik & Andrzej Popenda & Andrzej Szafraniec, 2021. "Mathematical Modelling of Transient Processes in an Asynchronous Drive with a Long Shaft Including Cardan Joints," Energies, MDPI, vol. 14(18), pages 1-17, September.
    4. Karol Wróbel & Kacper Śleszycki & Krzysztof Szabat & Seiichiro Katsura, 2021. "Application of Multilayer Observer for a Drive System with Flexibility," Energies, MDPI, vol. 14(24), pages 1-19, December.
    5. Marcin Kaminski & Tomasz Tarczewski, 2023. "Neural Network Applications in Electrical Drives—Trends in Control, Estimation, Diagnostics, and Construction," Energies, MDPI, vol. 16(11), pages 1-25, May.
    6. Karol Wróbel & Kacper Śleszycki & Amanuel Haftu Kahsay & Krzysztof Szabat & Seiichiro Katsura, 2023. "Robust Speed Control of Uncertain Two-Mass System," Energies, MDPI, vol. 16(17), pages 1-17, August.
    7. Piotr Derugo & Krzysztof Szabat & Tomasz Pajchrowski & Krzysztof Zawirski, 2022. "Fuzzy Adaptive Type II Controller for Two-Mass System," Energies, MDPI, vol. 15(2), pages 1-24, January.
    8. Matilde Santos, 2022. "Special Issue on Dynamics and Control of Offshore and Onshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-3, April.
    9. Mateusz Malarczyk & Jules-Raymond Tapamo & Marcin Kaminski, 2022. "Application of Neural Data Processing in Autonomous Model Platform—A Complex Review of Solutions, Design and Implementation," Energies, MDPI, vol. 15(13), pages 1-22, June.
    10. Krzysztof Szabat & Tomasz Pajchrowski & Tomasz Tarczewski, 2021. "Modern Electrical Drives: Trends, Problems, and Challenges," Energies, MDPI, vol. 15(1), pages 1-4, December.
    11. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.
    12. Andriy Lozynskyy & Tomasz Perzyński & Jacek Kozyra & Yurii Biletskyi & Lidiia Kasha, 2021. "The Interconnection and Damping Assignment Passivity-Based Control Synthesis via the Optimal Control Method for Electric Vehicle Subsystems," Energies, MDPI, vol. 14(12), pages 1-17, June.
    13. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Paweł Ligęza, 2021. "Basic, Advanced, and Sophisticated Approaches to the Current and Forecast Challenges of Wind Energy," Energies, MDPI, vol. 14(23), pages 1-10, December.
    16. Aboutalebi, Payam & Garrido, Aitor J. & Garrido, Izaskun & Nguyen, Dong Trong & Gao, Zhen, 2024. "Hydrostatic stability and hydrodynamics of a floating wind turbine platform integrated with oscillating water columns: A design study," Renewable Energy, Elsevier, vol. 221(C).
    17. Mahdi Erfanian Nakhchi & Shine Win Naung & Mohammad Rahmati, 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5475-:d:627730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.