IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2781-d553234.html
   My bibliography  Save this article

Determination and Compensation of Non-Active Torques for Parallel HEV Using PMSM/IM Motor(s)

Author

Listed:
  • Branislav Dobrucky

    (Faculty of Electrical Engineering and Information Technologies, University of Žilina, 010 26 Zilina, Slovakia)

  • Slavomir Kascak

    (Faculty of Electrical Engineering and Information Technologies, University of Žilina, 010 26 Zilina, Slovakia)

  • Michal Frivaldsky

    (Faculty of Electrical Engineering and Information Technologies, University of Žilina, 010 26 Zilina, Slovakia)

  • Michal Prazenica

    (Faculty of Electrical Engineering and Information Technologies, University of Žilina, 010 26 Zilina, Slovakia)

Abstract

The paper deals with the determination and compensation of non-active torques of parallel HEV using an auxiliary electrical PMSM or IM motor. The non-active oscillating torque generating by the ICE engine was estimated, and consequently, the compensating torque component of the current was determined. Based on real measured data, the four regimes of operation have been investigated: compensating non-active torques, parallel operation, regenerating for PMSM, and both parallel operations, together with compensation. Using of p-q theory, the power of fundamental harmonic is presented by average values P AV , Q AV of total power waveforms p(t), and q(t). Worked-out simulation results are used for sizing and dimensioning of PMSM machine, VSI inverter, and traction accumulator-battery. Circuit simulator Matlab/Simulink was used for all simulation experiments.

Suggested Citation

  • Branislav Dobrucky & Slavomir Kascak & Michal Frivaldsky & Michal Prazenica, 2021. "Determination and Compensation of Non-Active Torques for Parallel HEV Using PMSM/IM Motor(s)," Energies, MDPI, vol. 14(10), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2781-:d:553234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.
    2. Narongrit Pimkumwong & Ming-Shyan Wang, 2018. "Online Speed Estimation Using Artificial Neural Network for Speed Sensorless Direct Torque Control of Induction Motor based on Constant V/F Control Technique," Energies, MDPI, vol. 11(8), pages 1-14, August.
    3. Qin, Yechen & Tang, Xiaolin & Jia, Tong & Duan, Ziwen & Zhang, Jieming & Li, Yinong & Zheng, Ling, 2020. "Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Martin Sumega & Pavol Rafajdus & Marek Stulrajter, 2020. "Current Harmonics Controller for Reduction of Acoustic Noise, Vibrations and Torque Ripple Caused by Cogging Torque in PM Motors under FOC Operation," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Myeong-Hwan Hwang & Hae-Sol Lee & Hyun-Rok Cha, 2018. "Analysis of Torque Ripple and Cogging Torque Reduction in Electric Vehicle Traction Platform Applying Rotor Notched Design," Energies, MDPI, vol. 11(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.
    2. Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    4. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    5. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    6. Hongqing Chu & Wentong Shi & Yuyao Jiang & Bingzhao Gao, 2023. "Driveline Oscillation Damping for Hybrid Electric Vehicles Using Extended-State-Observer-Based Compensator," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    7. Kouridis, Ch & Vlachokostas, Ch, 2022. "Towards decarbonizing road transport: Environmental and social benefit of vehicle fleet electrification in urban areas of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. Hani Albalawi & Sherif A. Zaid & Mohmed E. El-Shimy & Ahmed M. Kassem, 2023. "Ant Colony Optimized Controller for Fast Direct Torque Control of Induction Motor," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    10. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Minhyeok Lee & Yunkyung Hwang & Kwanghee Nam, 2021. "Torque Ripple Minimizing of Uniform Slot Machines with Delta Rotor via Subdomain Analysis," Energies, MDPI, vol. 14(21), pages 1-18, November.
    12. Chung-Seong Lee & Kyoung-Soo Cha & Jin-Cheol Park & Myung-Seop Lim, 2020. "Tolerance-Insensitive Design of the Magnet Shape for a Surface Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 13(6), pages 1-16, March.
    13. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Bhatti, Ghanishtha & Mohan, Harshit & Raja Singh, R., 2021. "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    16. Mingchuan Liu & Jibin Zou & Yongxiang Xu & Hua Lan & Guodong Yu, 2022. "Vibration Enhancement or Weakening Effect Caused by Permanent Magnet Synchronous Motor Radial and Tangential Force Formed by Tooth Harmonics," Energies, MDPI, vol. 15(3), pages 1-11, January.
    17. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    18. Chaelim Jeong & Dongho Lee & Jin Hur, 2019. "Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM," Energies, MDPI, vol. 12(20), pages 1-15, October.
    19. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2781-:d:553234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.