IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6573-d909939.html
   My bibliography  Save this article

Overcurrent Protection and Unmatched Disturbance Rejection under Non-Cascade Structure for PMSM

Author

Listed:
  • Changhong Jiang

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130000, China)

  • Qiming Wang

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130000, China)

  • Niaona Zhang

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130000, China
    State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130000, China)

  • Haitao Ding

    (State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130000, China)

Abstract

A non-cascade structure with a simple parameter adjustment method and satisfying dynamic performance is investigated so as to address the problem of the complicated structure of a typical cascade control system of permanent magnet synchronous motor (PMSM) system. However, the current cannot work within a limited value under this structure, which poses a risk to circuit safety. To this end, a fast non-singular sliding mode (FNTSM) speed-control strategy is proposed to solve the inadequate resilience of the PI controller. Then, a nonlinear term is developed to address the q -axis current overrun. Furthermore, a sliding-mode disturbance observer (SMDO) is proposed to compensate for the current fluctuation caused by the unmatched load torque disturbances. Finally, stability analysis is conducted for the proposed composite strategy, and the hardware-in-the-loop experiments verify that it achieves satisfying speed-tracking performance and ensures overcurrent protection under unmatched disturbances.

Suggested Citation

  • Changhong Jiang & Qiming Wang & Niaona Zhang & Haitao Ding, 2022. "Overcurrent Protection and Unmatched Disturbance Rejection under Non-Cascade Structure for PMSM," Energies, MDPI, vol. 15(18), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6573-:d:909939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Deng & Chulheung Bae & James Marcicki & Alvaro Masias & Theodore Miller, 2018. "Safety modelling and testing of lithium-ion batteries in electrified vehicles," Nature Energy, Nature, vol. 3(4), pages 261-266, April.
    2. Ming Cheng & Le Sun & Giuseppe Buja & Lihua Song, 2015. "Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles," Energies, MDPI, vol. 8(9), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    2. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    3. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    4. Hongrui Liu & Xiangyang Wei & Junjie Ai & Xudong Yang, 2024. "A Layered Parallel Equaliser Based on Flyback Transformer Multiplexed for Lithium-Ion Battery System," Energies, MDPI, vol. 17(3), pages 1-15, February.
    5. Feng Zhu & Runzhou Zhou & David J. Sypeck, 2020. "Numerical Modeling and Safety Design for Lithium-Ion Vehicle Battery Modules Subject to Crush Loading," Energies, MDPI, vol. 14(1), pages 1-24, December.
    6. Ahmed Chaibet & Moussa Boukhnifer & Nadir Ouddah & Eric Monmasson, 2020. "Experimental Sensorless Control of Switched Reluctance Motor for Electrical Powertrain System," Energies, MDPI, vol. 13(12), pages 1-15, June.
    7. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    8. Feng Yu & Ming Cheng & Kwok Tong Chau & Feng Li, 2015. "Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles," Energies, MDPI, vol. 8(9), pages 1-19, September.
    9. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    10. Xiaoyuan Wang & Haiying Lv & Qiang Sun & Yanqing Mi & Peng Gao, 2017. "A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.
    11. Rui Tu & Hui Yang & Heyun Lin & Hanlin Zhan & Di Wu & Minghu Yu & Liang Chen & Wenjie Chen, 2022. "Investigation of a Novel Consequent-Pole Flux-Intensifying Memory Machine," Energies, MDPI, vol. 15(15), pages 1-15, July.
    12. Yuanxi Chen & Weinong Fu & Shuangxia Niu & Sigao Wang, 2023. "A Torque-Enhanced Magnetic-Geared Machine with Dual-Series-Winding and Its Design Approach for Electric Vehicle Powertrain," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    13. Jingxia Wang & Yusheng Hu & Ming Cheng & Biao Li & Bin Chen, 2020. "Bidirectional Coupling Model of Electromagnetic Field and Thermal Field Applied to the Thermal Analysis of the FSPM Machine," Energies, MDPI, vol. 13(12), pages 1-15, June.
    14. Jingzhao Zhang & Yanan Wang & Benben Jiang & Haowei He & Shaobo Huang & Chen Wang & Yang Zhang & Xuebing Han & Dongxu Guo & Guannan He & Minggao Ouyang, 2023. "Realistic fault detection of li-ion battery via dynamical deep learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Lei Chen & Yulong Pei & Feng Chai & Shukang Cheng, 2016. "Investigation of a Novel Mechanical to Thermal Energy Converter Based on the Inverse Problem of Electric Machines," Energies, MDPI, vol. 9(7), pages 1-19, July.
    16. Hongye Zhang & Zezhao Wen & Francesco Grilli & Konstantinos Gyftakis & Markus Mueller, 2021. "Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines," Energies, MDPI, vol. 14(8), pages 1-39, April.
    17. Wenping Chai & Thomas A. Lipo & Byung-il Kwon, 2018. "Design and Optimization of a Novel Wound Field Synchronous Machine for Torque Performance Enhancement," Energies, MDPI, vol. 11(8), pages 1-15, August.
    18. Ik-Hyun Jo & Ju Lee & Hyung-Woo Lee & Jae-Bum Lee & Jae-Hyeon Lim & Seong-Hwi Kim & Chan-Bae Park, 2022. "A Study on MG-PMSM for High Torque Density of 45 kW–Class Tram Driving System," Energies, MDPI, vol. 15(5), pages 1-13, February.
    19. Chenyun Wu & Rabia Sehab & Ahmad Akrad & Cristina Morel, 2022. "Fault Diagnosis Methods and Fault Tolerant Control Strategies for the Electric Vehicle Powertrains," Energies, MDPI, vol. 15(13), pages 1-7, July.
    20. Karina Masalkovaitė & Paul Gasper & Donal P. Finegan, 2024. "Predicting the heat release variability of Li-ion cells under thermal runaway with few or no calorimetry data," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6573-:d:909939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.