IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3199-d565608.html
   My bibliography  Save this article

Impact of Enclosure Boundary Patterns and Lift-Up Design on Optimization of Summer Pedestrian Wind Environment in High-Density Residential Districts

Author

Listed:
  • Zhengrong Jiang

    (College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China)

  • Weijun Gao

    (Faculty of Environmental Engineering, The University of Kitakyushu, Fukuoka 8080135, Japan)

Abstract

A comfortable wind environment favors the sustainable development of urban residential districts and public health. However, the rapid growth of high-rise urban residential districts leads to low wind velocity environments in summer. This study examines the influence of enclosure boundary patterns and lift-up design on the wind environment and proposes an optimization strategy to improve the low wind velocity environment in residential districts in summer. A typical residential district in Hangzhou was selected; the average wind velocity, calm wind zone ratio and comfortable wind zone ratio were selected as the evaluation indexes. The wind environment for different enclosure boundary patterns and lift-up designs were obtained via computational fluid dynamics (CFD) simulations. The results indicate that the pedestrian wind environment is greatly improved in residential districts by reducing the height/width of the enclosure boundary, increasing the permeability rate and adopting a lift-up design in all buildings within residential districts. A combination of permeable railings and lift-up design is recommended; this can increase the average wind velocity and the ratio of comfortable wind zones by 70% and 200%, respectively. This study provides practical guidelines for the optimization of a low wind velocity environment in Chinese high-density residential districts in summer.

Suggested Citation

  • Zhengrong Jiang & Weijun Gao, 2021. "Impact of Enclosure Boundary Patterns and Lift-Up Design on Optimization of Summer Pedestrian Wind Environment in High-Density Residential Districts," Energies, MDPI, vol. 14(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3199-:d:565608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyu Ying & Yanling Wang & Wenzhe Li & Ziqiao Liu & Grace Ding, 2020. "Group Layout Pattern and Outdoor Wind Environment of Enclosed Office Buildings in Hangzhou," Energies, MDPI, vol. 13(2), pages 1-16, January.
    2. Mengzhu Xiao & Sonja Simon & Thomas Pregger, 2019. "Energy System Transitions in the Eastern Coastal Metropolitan Regions of China—The Role of Regional Policy Plans," Energies, MDPI, vol. 12(3), pages 1-30, January.
    3. Tzu-Ling Huang & Chien-Yuan Kuo & Chun-Ta Tzeng & Chi-Ming Lai, 2020. "The Influence of High-Rise Buildings on Pedestrian-Level Wind in Surrounding Street Canyons in an Urban Renewal Project," Energies, MDPI, vol. 13(11), pages 1-12, May.
    4. Mario Coccia, 2020. "How ( Un )sustainable Environments Are Related to the Diffusion of COVID-19: The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    5. Hong, Bo & Lin, Borong, 2015. "Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement," Renewable Energy, Elsevier, vol. 73(C), pages 18-27.
    6. Beungyong Park & Sihwan Lee, 2020. "Investigation of the Energy Saving Efficiency of a Natural Ventilation Strategy in a Multistory School Building," Energies, MDPI, vol. 13(7), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangliang Zhong & Hassam Nasarullah Chaudhry & John Kaiser Calautit, 2021. "Effect of Roof Cooling and Air Curtain Gates on Thermal and Wind Conditions in Stadiums for Hot Climates," Energies, MDPI, vol. 14(13), pages 1-23, July.
    2. Mark B. Luther & Igor Martek & Mehdi Amirkhani & Gerhard Zucker, 2022. "Special Issue “Environmental Technology Applications in the Retrofitting of Residential Buildings”," Energies, MDPI, vol. 15(16), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Fan & Siwen Ren & Yuan Ma & Qibo Liu, 2023. "The Coupling Relationship between Building Morphology and Outdoor Wind Environment in the High-Rise Dormitory Area in China," Energies, MDPI, vol. 16(9), pages 1-21, April.
    2. Elzbieta Rynska & Joanna Klimowicz & Slawomir Kowal & Krzysztof Lyzwa & Michal Pierzchalski & Wojciech Rekosz, 2020. "Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area," Energies, MDPI, vol. 13(15), pages 1-24, July.
    3. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    4. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    5. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    7. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    8. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    9. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
    10. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    11. Giovanni Andrés Quintana-Pedraza & Sara Cristina Vieira-Agudelo & Nicolás Muñoz-Galeano, 2019. "A Cradle-to-Grave Multi-Pronged Methodology to Obtain the Carbon Footprint of Electro-Intensive Power Electronic Products," Energies, MDPI, vol. 12(17), pages 1-16, August.
    12. Xiaochao Su & Zhilong Chen & Xudong Zhao & Xiaobin Yang & Qilin Feng & Haizhou Tang, 2018. "Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    13. Xiaochao Su & Hao Cai & Zhilong Chen & Qilin Feng, 2017. "Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses," Sustainability, MDPI, vol. 9(9), pages 1-19, September.
    14. Lixing Chen & Yingzi Zhang & Zhengzheng Luo & Fei Yao, 2022. "Optimization Design of the Landscape Elements in the Lhasa Residential Area Driven by an Orthogonal Experiment and a Numerical Simulation," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    15. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    16. Umberto Berardi & Yupeng Wang, 2016. "The Effect of a Denser City over the Urban Microclimate: The Case of Toronto," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    17. Benedetto Nastasi & Francesco Mancini, 2021. "Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction," Energies, MDPI, vol. 14(9), pages 1-2, April.
    18. Hong Jin & Zheming Liu & Yumeng Jin & Jian Kang & Jing Liu, 2017. "The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    19. Hongqiao Qin & Bo Hong & Runsheng Jiang, 2018. "Are Green Walls Better Options than Green Roofs for Mitigating PM 10 Pollution? CFD Simulations in Urban Street Canyons," Sustainability, MDPI, vol. 10(8), pages 1-21, August.
    20. Pilar Mercader-Moyano & Ana Mª Estable-Reifs & Homero Pellicer, 2021. "Toward the Renewal of the Sustainable Urban Indicators’ System after a Global Health Crisis. Practical Application in Granada, Spain," Energies, MDPI, vol. 14(19), pages 1-43, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3199-:d:565608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.