IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i5p4143-d1080430.html
   My bibliography  Save this article

Research on Wind Environment and Morphological Effects of High-Rise Buildings in Macau: An Example from the New Reclamation Area around Areia Preta

Author

Listed:
  • Jialun He

    (Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau 999078, China
    These authors contributed equally to this work.)

  • Yile Chen

    (Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau 999078, China
    These authors contributed equally to this work.)

  • Liang Zheng

    (Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau 999078, China)

  • Jianyi Zheng

    (Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau 999078, China)

Abstract

The Macau peninsula is close to the tropical ocean, with a high population density and a large number of high-rise buildings, which require a windy environment with good ventilation and heat dissipation. Based on residential samples and the degree of agglomeration, the high-rise residential area in Areia Preta was selected as the focus of this study. Meanwhile, summer typhoons pose serious safety risks to high-rise buildings. Therefore, it is necessary to study the connection between spatial form and the wind environment. First of all, this research is based on relevant concepts and the wind environment evaluation system of high-rise buildings and conducts research on high-rise residential areas in Areia Preta. PHOENICS software is used to simulate the prevailing monsoon in winter and summer, as well as a typhoon in an extreme wind environment, and summarize the wind environment’s characteristics. Secondly, by comparing the parameter calculation and simulation results, the possible relationship between the causes of each wind field is studied. Finally, conclusions are drawn about the urban form and wind environment of the site, and corresponding control strategies are proposed to reduce the shielding effect between buildings and typhoon damage. It can be used as a theoretical basis and reference point for urban construction and high-rise building planning and layout.

Suggested Citation

  • Jialun He & Yile Chen & Liang Zheng & Jianyi Zheng, 2023. "Research on Wind Environment and Morphological Effects of High-Rise Buildings in Macau: An Example from the New Reclamation Area around Areia Preta," IJERPH, MDPI, vol. 20(5), pages 1-35, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4143-:d:1080430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/5/4143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/5/4143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Chung, 2009. "Valuing Heritage in Macau: On Contexts and Processes of Urban Conservation," Journal of Current Chinese Affairs - China aktuell, Institute of Asian Studies, GIGA German Institute of Global and Area Studies, Hamburg, vol. 38(1), pages 129-160.
    2. Sanaieian, Haniyeh & Tenpierik, Martin & Linden, Kees van den & Mehdizadeh Seraj, Fatemeh & Mofidi Shemrani, Seyed Majid, 2014. "Review of the impact of urban block form on thermal performance, solar access and ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 551-560.
    3. Hong, Bo & Lin, Borong, 2015. "Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement," Renewable Energy, Elsevier, vol. 73(C), pages 18-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    2. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    3. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    4. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    5. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    6. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    7. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    8. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    9. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    10. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    11. Savvides, Andreas & Vassiliades, Constantinos & Michael, Aimilios & Kalogirou, Soteris, 2019. "Siting and building-massing considerations for the urban integration of active solar energy systems," Renewable Energy, Elsevier, vol. 135(C), pages 963-974.
    12. Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
    13. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
    14. Milena Vukmirovic & Suzana Gavrilovic & Dalibor Stojanovic, 2019. "The Improvement of the Comfort of Public Spaces as a Local Initiative in Coping with Climate Change," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    15. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    16. Shiyi Song & Hong Leng & Han Xu & Ran Guo & Yan Zhao, 2020. "Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    17. Rempel, A.R. & Rempel, A.W. & McComas, S.M. & Duffey, S. & Enright, C. & Mishra, S., 2021. "Magnitude and distribution of the untapped solar space-heating resource in U.S. climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Xiaochao Su & Zhilong Chen & Xudong Zhao & Xiaobin Yang & Qilin Feng & Haizhou Tang, 2018. "Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    19. Xiaochao Su & Hao Cai & Zhilong Chen & Qilin Feng, 2017. "Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses," Sustainability, MDPI, vol. 9(9), pages 1-19, September.
    20. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4143-:d:1080430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.