IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3198-d565585.html
   My bibliography  Save this article

Physiological, Biochemical and Energetic Characteristics of Torulaspora globosa , a Potential Producer of Biofuel

Author

Listed:
  • Svetlana V. Kamzolova

    (G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow, Russia)

  • Igor G. Morgunov

    (G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow, Russia)

Abstract

It was obtained that the yeast Torulaspora globosa VKPM Y-953 is suitable for the production of biodiesel fuel. Zinc plays an important regulatory role in the metabolism of the studied strain. The study of the growth parameters and the fatty acid profile of the yeast T. globosa showed that the limitation of its growth by ethanol, at different concentrations of zinc in the medium, considerably influences the chemical composition and the energy content of yeast cells, but not their yield by weight (Yx/s). The increased concentrations of zinc in the medium, in combination with the yeast growth limitation by ethanol, elevated the content of lipids in the cells by 28% and diminished the content of proteins by 14%. At the same time, the limitation of yeast growth by zinc decreased Yx/s and energy (η X/S ) by 2.6 and 3.1 times, respectively. In this case, the content of lipids in cells fell by 72%, while that of proteins rose by 65%. The fatty acid profile of the T. globosa cells was used to estimate the main characteristics of biodiesel (iodine value, cetane number, density, and kinematic viscosity). The biomass of T. globosa can also be used in agriculture as a feed additive rich in essential amino acids.

Suggested Citation

  • Svetlana V. Kamzolova & Igor G. Morgunov, 2021. "Physiological, Biochemical and Energetic Characteristics of Torulaspora globosa , a Potential Producer of Biofuel," Energies, MDPI, vol. 14(11), pages 1-9, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3198-:d:565585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nemailla Bonturi & Leonidas Matsakas & Robert Nilsson & Paul Christakopoulos & Everson Alves Miranda & Kris Arvid Berglund & Ulrika Rova, 2015. "Single Cell Oil Producing Yeasts Lipomyces starkeyi and Rhodosporidium toruloides : Selection of Extraction Strategies and Biodiesel Property Prediction," Energies, MDPI, vol. 8(6), pages 1-13, May.
    2. Shihui Yang & Wei Wang & Hui Wei & Stefanie Van Wychen & Philip T. Pienkos & Min Zhang & Michael E. Himmel, 2016. "Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species," Energies, MDPI, vol. 9(9), pages 1-12, August.
    3. John Blazeck & Andrew Hill & Leqian Liu & Rebecca Knight & Jarrett Miller & Anny Pan & Peter Otoupal & Hal S. Alper, 2014. "Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    4. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Violeta Makareviciene, 2022. "Advances in Catalytic Technologies for Biodiesel Fuel Synthesis," Energies, MDPI, vol. 15(3), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Robles-Iglesias, Raúl & Naveira-Pazos, Cecilia & Fernández-Blanco, Carla & Veiga, María C. & Kennes, Christian, 2023. "Factors affecting the optimisation and scale-up of lipid accumulation in oleaginous yeasts for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    5. Rishibha Dixit & Surendra Singh & Manoj Kumar Enamala & Alok Patel, 2022. "Effect of Various Growth Medium on the Physiology and De Novo Lipogenesis of a Freshwater Microalga Scenedesmus rotundus -MG910488 under Autotrophic Condition," Clean Technol., MDPI, vol. 4(3), pages 1-19, August.
    6. Arif, Muhammad & Li, Yuxi & El-Dalatony, Marwa M. & Zhang, Chunjiang & Li, Xiangkai & Salama, El-Sayed, 2021. "A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal," Renewable Energy, Elsevier, vol. 163(C), pages 1973-1982.
    7. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    8. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Shihui Yang & Wei Wang & Hui Wei & Stefanie Van Wychen & Philip T. Pienkos & Min Zhang & Michael E. Himmel, 2016. "Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species," Energies, MDPI, vol. 9(9), pages 1-12, August.
    10. Bazgha Ijaz & Muhammad Asif Hanif & Umer Rashid & Muhammad Zubair & Zahid Mushtaq & Haq Nawaz & Thomas Shean Yaw Choong & Imededdine Arbi Nehdi, 2020. "High Vacuum Fractional Distillation (HVFD) Approach for Quality and Performance Improvement of Azadirachta indica Biodiesel," Energies, MDPI, vol. 13(11), pages 1-15, June.
    11. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    12. Patel, Alok & Pruthi, Vikas & Pruthi, Parul A., 2019. "Innovative screening approach for the identification of triacylglycerol accumulating oleaginous strains," Renewable Energy, Elsevier, vol. 135(C), pages 936-944.
    13. Bao, Wenjun & Li, Zifu & Wang, Xuemei & Gao, Ruiling & Zhou, Xiaoqin & Cheng, Shikun & Men, Yu & Zheng, Lei, 2021. "Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Marina Grubišić & Maja Galić Perečinec & Ines Peremin & Katarina Mihajlovski & Sunčica Beluhan & Božidar Šantek & Mirela Ivančić Šantek, 2022. "Optimization of Pretreatment Conditions and Enzymatic Hydrolysis of Corn Cobs for Production of Microbial Lipids by Trichosporon oleaginosus," Energies, MDPI, vol. 15(9), pages 1-16, April.
    15. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    16. Yook, Sang Do & Kim, Jiwon & Woo, Han Min & Um, Youngsoon & Lee, Sun-Mi, 2019. "Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents," Renewable Energy, Elsevier, vol. 132(C), pages 61-67.
    17. Robert Hren & Aleksandra Petrovič & Lidija Čuček & Marjana Simonič, 2020. "Determination of Various Parameters during Thermal and Biological Pretreatment of Waste Materials," Energies, MDPI, vol. 13(9), pages 1-15, May.
    18. Maurizio Comoli & Patrizia Tettamanzi & Michael Murgolo, 2023. "Accounting for ‘ESG’ under Disruptions: A Systematic Literature Network Analysis," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    19. Nesma M. Helal & Hesham F. Alharby & Basmah M. Alharbi & Atif. A. Bamagoos & Ahmed M. Hashim, 2020. "Thymelaea hirsuta and Echinops spinosus : Xerophytic Plants with High Potential for First-Generation Biodiesel Production," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    20. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3198-:d:565585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.