Thermal Resistance Matrix Extraction from Finite-Element Analysis for High-Frequency Magnetic Components
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David de la Hoz & Guillermo Salinas & Vladimir Šviković & Pedro Alou, 2020. "Simplification of Thermal Networks for Magnetic Components in Space Power Electronics," Energies, MDPI, vol. 13(11), pages 1-26, June.
- Krzysztof Górecki & Kalina Detka & Krzysztof Górski, 2020. "Compact Thermal Model of the Pulse Transformer Taking into Account Nonlinearity of Heat Transfer," Energies, MDPI, vol. 13(11), pages 1-17, June.
- Yao Chang & Wuhua Li & Haoze Luo & Xiangning He & Francesco Iannuzzo & Frede Blaabjerg & Weixing Lin, 2019. "A 3D Thermal Network Model for Monitoring Imbalanced Thermal Distribution of Press-Pack IGBT Modules in MMC-HVDC Applications," Energies, MDPI, vol. 12(7), pages 1-20, April.
- Humphrey Mokom Njawah Achiri & Vaclav Smidl & Zdenek Peroutka & Lubos Streit, 2020. "Least Squares Method for Identification of IGBT Thermal Impedance Networks Using Direct Temperature Measurements," Energies, MDPI, vol. 13(14), pages 1-13, July.
- Yazdani-Asrami, Mohammad & Mirzaie, Mohammad & Shayegani Akmal, Amir Abbas, 2013. "No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis," Energy, Elsevier, vol. 50(C), pages 205-219.
- de la Bat, B.J.G. & Dobson, R.T. & Harms, T.M. & Bell, A.J., 2020. "Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator," Applied Energy, Elsevier, vol. 263(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fabio Corti & Alberto Reatti & Gabriele Maria Lozito & Ermanno Cardelli & Antonino Laudani, 2021. "Influence of Non-Linearity in Losses Estimation of Magnetic Components for DC-DC Converters," Energies, MDPI, vol. 14(20), pages 1-16, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Krzysztof Górecki & Kalina Detka & Krystian Kaczerski, 2022. "The Influence of the Transformer Core Material on the Characteristics of a Full-Bridge DC-DC Converter," Energies, MDPI, vol. 15(17), pages 1-13, August.
- Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
- Byungju Park & Jaehyeong Lee & Hangkyu Yoo & Gilsoo Jang, 2021. "Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System," Energies, MDPI, vol. 14(8), pages 1-16, April.
- Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
- Reda Bakri & Xavier Margueron & Philippe Le Moigne & Nadir Idir, 2024. "Thermal Resistance Modeling for the Optimal Design of EE and E/PLT Core-Based Planar Magnetics," Energies, MDPI, vol. 17(11), pages 1-19, June.
- Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
- Chin-Hsiang Cheng & Surender Dhanasekaran, 2021. "Numerical Analysis and Parametric Study of a 7 kW Tubular Permanent Magnet Linear Alternator," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
- Krzysztof Górecki & Kalina Detka, 2023. "SPICE-Aided Models of Magnetic Elements—A Critical Review," Energies, MDPI, vol. 16(18), pages 1-27, September.
- Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
- Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
- Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
- Krzysztof Górecki & Kalina Detka & Krzysztof Górski, 2020. "Compact Thermal Model of the Pulse Transformer Taking into Account Nonlinearity of Heat Transfer," Energies, MDPI, vol. 13(11), pages 1-17, June.
- Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
- El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
- Rogkas, N. & Karampasakis, E. & Fotopoulou, M. & Rakopoulos, D., 2024. "Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA," Energy, Elsevier, vol. 300(C).
- Kalina Detka & Krzysztof Górecki & Przemysław Ptak, 2023. "Model of an Air Transformer for Analyses of Wireless Power Transfer Systems," Energies, MDPI, vol. 16(3), pages 1-19, January.
- Denitsa Darzhanova & Ilona Iatcheva, 2023. "Investigation of the Temperature Field Distribution in an EI Type Iron-Cored Coil Using 3D FEM Modeling at Different Load Conditions," Energies, MDPI, vol. 16(12), pages 1-13, June.
- Seyyedbarzegar, Seyyed Meysam & Mirzaie, Mohammad, 2015. "Heat transfer analysis of metal oxide surge arrester under power frequency applied voltage," Energy, Elsevier, vol. 93(P1), pages 141-153.
- Uchman, Wojciech & Kotowicz, Janusz & Li, Kin Fun, 2021. "Evaluation of a micro-cogeneration unit with integrated electrical energy storage for residential application," Applied Energy, Elsevier, vol. 282(PA).
- Dae Yong Um & Gwan Soo Park, 2021. "Comparison of Electromagnetic Characteristics of Single-Phase Induction Motor between Balanced and Unbalanced Operation under Different Loads," Energies, MDPI, vol. 14(4), pages 1-11, February.
More about this item
Keywords
electrothermal effects; Finite Element Analysis; inductors; thermal model; transformers;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3075-:d:562004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.