IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3749-d387711.html
   My bibliography  Save this article

Least Squares Method for Identification of IGBT Thermal Impedance Networks Using Direct Temperature Measurements

Author

Listed:
  • Humphrey Mokom Njawah Achiri

    (Regional Innovation Centre for Electrical Engineering, University of West Bohemia, 301 00 Plzeň 3, Czech Republic)

  • Vaclav Smidl

    (Regional Innovation Centre for Electrical Engineering, University of West Bohemia, 301 00 Plzeň 3, Czech Republic)

  • Zdenek Peroutka

    (Regional Innovation Centre for Electrical Engineering, University of West Bohemia, 301 00 Plzeň 3, Czech Republic)

  • Lubos Streit

    (Regional Innovation Centre for Electrical Engineering, University of West Bohemia, 301 00 Plzeň 3, Czech Republic)

Abstract

State-of-the-art methods for determining thermal impedance networks for IGBT (Insulated Gate Bipolar Transistor) modules usually involves the establishment of the relationship between the measured transistor or diode voltage and temperature under homogenous temperature distribution across the IGBT module. The junction temperature is recomputed from the established voltage–temperature relationship and used in determining the thermal impedance network. This method requires accurate measurement of voltage drop across the transistors and diodes under specific designed heating and cooling profiles. Validation of the junction temperature is usually done using infrared camera or sensors placed close to the transistors or diodes (in some cases and open IGBT module) so that the measured temperature is as close to the junction as possible. In this paper, we propose an alternative method for determining the IGBT thermal impedance network using the principles of least squares. This method uses measured temperatures for defined heating and cooling cycles under different cooling conditions to determine the thermal impedance network. The results from the proposed method are compared with those obtained using state-of-the-art methods.

Suggested Citation

  • Humphrey Mokom Njawah Achiri & Vaclav Smidl & Zdenek Peroutka & Lubos Streit, 2020. "Least Squares Method for Identification of IGBT Thermal Impedance Networks Using Direct Temperature Measurements," Energies, MDPI, vol. 13(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3749-:d:387711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Plesca, 2019. "Thermal Analysis of Power Semiconductor Device in Steady-State Conditions," Energies, MDPI, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Salinas & Juan A. Serrano-Vargas & Javier Muñoz-Antón & Pedro Alou, 2021. "Thermal Resistance Matrix Extraction from Finite-Element Analysis for High-Frequency Magnetic Components," Energies, MDPI, vol. 14(11), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3749-:d:387711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.