IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224013033.html
   My bibliography  Save this article

Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA

Author

Listed:
  • Rogkas, N.
  • Karampasakis, E.
  • Fotopoulou, M.
  • Rakopoulos, D.

Abstract

The calculation of the temperature fields in solid state transformers is a critical step of the design process in order to ensure the stable and efficient operation of the device. Transformers operating in high frequencies can develop increased temperatures that potentially may result in the failure of the components due to the associated thermal stresses. This paper investigates the heat transfer mechanisms of a novel inductive power transfer (IPT) system submerged in a dielectric oil and operating at 50 kHz, in the context of SSTAR, a Horizon Europe project. The commercial software ANSYS is employed to implement a one-way coupled electromagnetic-thermal finite element simulation model in order to calculate the temperature field of the IPT components based on the electromagnetic losses. To cross-validate the model, the results obtained from ANSYS are benchmarked against the COMSOL software, revealing accepted temperature deviations between the two software. A comprehensive parametric analysis explores the impact of rated power, operating frequency, and dielectric gap on generated heat, highlighting their direct correlation with temperature increase. The findings underscore increased temperature levels, approximately reaching 224 °C under nominal operating conditions, with the temperature distribution concentrated around the transformer's windings.

Suggested Citation

  • Rogkas, N. & Karampasakis, E. & Fotopoulou, M. & Rakopoulos, D., 2024. "Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013033
    DOI: 10.1016/j.energy.2024.131530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Rong Si & Chen-Zhao Fu & Xu-Tao Wu & Xiu Zhou & Xiu-Guang Li & Yi-Ting Yu & Xiao-Yu Jia & Jian Yang, 2020. "Numerical Study of Electromagnetic Loss and Heat Transfer in an Oil-Immersed Transformer," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, September.
    2. Maria Fotopoulou & Dimitrios Rakopoulos & Dimitrios Trigkas & Fotis Stergiopoulos & Orestis Blanas & Spyros Voutetakis, 2021. "State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids," Energies, MDPI, vol. 14(18), pages 1-27, September.
    3. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    4. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    5. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    6. Hajipour, Ehsan & Mohiti, Maryam & Farzin, Nima & Vakilian, Mehdi, 2017. "Optimal distribution transformer sizing in a harmonic involved load environment via dynamic programming technique," Energy, Elsevier, vol. 120(C), pages 92-105.
    7. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    8. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    9. Yazdani-Asrami, Mohammad & Mirzaie, Mohammad & Shayegani Akmal, Amir Abbas, 2013. "No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis," Energy, Elsevier, vol. 50(C), pages 205-219.
    10. Nan Zhu & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Analysis of Interturn Faults on Transformer Based on Electromagnetic-Mechanical Coupling," Energies, MDPI, vol. 16(1), pages 1-13, January.
    11. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    12. Mohammed Azharuddin Shamshuddin & Felix Rojas & Roberto Cardenas & Javier Pereda & Matias Diaz & Ralph Kennel, 2020. "Solid State Transformers: Concepts, Classification, and Control," Energies, MDPI, vol. 13(9), pages 1-35, May.
    13. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    14. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Shuo Jin, 2017. "A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias," Energies, MDPI, vol. 10(4), pages 1-9, March.
    15. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    2. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    3. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    4. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    5. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    6. Lopes, Rui Amaral & Magalhães, Pedro & Gouveia, João Pedro & Aelenei, Daniel & Lima, Celson & Martins, João, 2018. "A case study on the impact of nearly Zero-Energy Buildings on distribution transformer aging," Energy, Elsevier, vol. 157(C), pages 669-678.
    7. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    8. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    9. Alexandra Blanch-Fortuna & David Zambrano-Prada & Oswaldo López-Santos & Abdelali El Aroudi & Luis Vázquez-Seisdedos & Luis Martinez-Salamero, 2024. "Hierarchical Control of Power Distribution in the Hybrid Energy Storage System of an Ultrafast Charging Station for Electric Vehicles," Energies, MDPI, vol. 17(6), pages 1-20, March.
    10. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    11. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    12. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    13. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    14. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    15. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    16. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    17. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    19. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    20. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.