IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2903-d368007.html
   My bibliography  Save this article

Simplification of Thermal Networks for Magnetic Components in Space Power Electronics

Author

Listed:
  • David de la Hoz

    (Centro de Electrónica Industrial, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

  • Guillermo Salinas

    (Centro de Electrónica Industrial, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

  • Vladimir Šviković

    (Thales Alenia Space, 28760 Tres Cantos, Spain)

  • Pedro Alou

    (Centro de Electrónica Industrial, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

Abstract

The volume of magnetic components for space applications, directly related to the launch cost, and their performance are critically influenced by their capability to dissipate the internal electromagnetic power losses. This is the reason why accurate thermal models are required. Furthermore, these models need to be simple and versatile to allow a fast analysis of many different designs. In this study, a specific methodology to analyze inductors and transformers by thermal networks and a simplification based on the Thevenin’s theorem leading to a simple equation are proposed. The specific details to address thermal modelling for space magnetic components are discussed. A generic 50 W Flyback transformer for space applications is analyzed in this study and experimental validation is provided, showing that the proposed method leads to a deviation in the temperature estimation between 1 °C and 5 °C, which is considered quite a good result from the literature review carried out.

Suggested Citation

  • David de la Hoz & Guillermo Salinas & Vladimir Šviković & Pedro Alou, 2020. "Simplification of Thermal Networks for Magnetic Components in Space Power Electronics," Energies, MDPI, vol. 13(11), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2903-:d:368007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2903/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Górecki & Kalina Detka & Krzysztof Górski, 2020. "Compact Thermal Model of the Pulse Transformer Taking into Account Nonlinearity of Heat Transfer," Energies, MDPI, vol. 13(11), pages 1-17, June.
    2. Guillermo Salinas & Juan A. Serrano-Vargas & Javier Muñoz-Antón & Pedro Alou, 2021. "Thermal Resistance Matrix Extraction from Finite-Element Analysis for High-Frequency Magnetic Components," Energies, MDPI, vol. 14(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2903-:d:368007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.