IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p919-d496603.html
   My bibliography  Save this article

Comparison of Electromagnetic Characteristics of Single-Phase Induction Motor between Balanced and Unbalanced Operation under Different Loads

Author

Listed:
  • Dae Yong Um

    (Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

  • Gwan Soo Park

    (Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

Abstract

This paper varies load conditions in a single-phase induction motor and deals with consequent effects on the electromagnetic characteristics in terms of a balanced and unbalanced operation. Based on a balanced-load condition, the magnetic field, electromagnetic losses, magnetic torque are quantified by the time-stepping finite element method at six different loads. The spatial distribution of the air-gap magnetic field are investigated to characterize the existence between the load variation and unbalanced operation. The components of electromagnetic losses are analyzed in terms of main parameters degrading the operating efficiency according to the load variation. The result can show the importance of building the magnetic balance for a high performance, and the design guideline for SPIMs running at multiple operating points is discussed.

Suggested Citation

  • Dae Yong Um & Gwan Soo Park, 2021. "Comparison of Electromagnetic Characteristics of Single-Phase Induction Motor between Balanced and Unbalanced Operation under Different Loads," Energies, MDPI, vol. 14(4), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:919-:d:496603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazdani-Asrami, Mohammad & Mirzaie, Mohammad & Shayegani Akmal, Amir Abbas, 2013. "No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis," Energy, Elsevier, vol. 50(C), pages 205-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byungju Park & Jaehyeong Lee & Hangkyu Yoo & Gilsoo Jang, 2021. "Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System," Energies, MDPI, vol. 14(8), pages 1-16, April.
    2. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    3. Guillermo Salinas & Juan A. Serrano-Vargas & Javier Muñoz-Antón & Pedro Alou, 2021. "Thermal Resistance Matrix Extraction from Finite-Element Analysis for High-Frequency Magnetic Components," Energies, MDPI, vol. 14(11), pages 1-14, May.
    4. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
    5. Rogkas, N. & Karampasakis, E. & Fotopoulou, M. & Rakopoulos, D., 2024. "Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA," Energy, Elsevier, vol. 300(C).
    6. Seyyedbarzegar, Seyyed Meysam & Mirzaie, Mohammad, 2015. "Heat transfer analysis of metal oxide surge arrester under power frequency applied voltage," Energy, Elsevier, vol. 93(P1), pages 141-153.
    7. Alvaro Carreno & Marcelo Perez & Carlos Baier & Alex Huang & Sanjay Rajendran & Mariusz Malinowski, 2021. "Configurations, Power Topologies and Applications of Hybrid Distribution Transformers," Energies, MDPI, vol. 14(5), pages 1-35, February.
    8. Maurizio Fantauzzi & Davide Lauria & Fabio Mottola & Daniela Proto, 2021. "Estimating Wind Farm Transformers Rating through Lifetime Characterization Based on Stochastic Modeling of Wind Power," Energies, MDPI, vol. 14(5), pages 1-16, March.
    9. Lopes, Rui Amaral & Magalhães, Pedro & Gouveia, João Pedro & Aelenei, Daniel & Lima, Celson & Martins, João, 2018. "A case study on the impact of nearly Zero-Energy Buildings on distribution transformer aging," Energy, Elsevier, vol. 157(C), pages 669-678.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:919-:d:496603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.