IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3295-d1117701.html
   My bibliography  Save this article

Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model

Author

Listed:
  • Aamer A. Shah

    (School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018, China)

  • Almani A. Aftab

    (Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jingshi Road 17923, Jinan 250061, China)

  • Xueshan Han

    (Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jingshi Road 17923, Jinan 250061, China)

  • Mazhar Hussain Baloch

    (College of Engineering, A’ Sharqiyah University, Ibra 400, Oman)

  • Mohamed Shaik Honnurvali

    (College of Engineering, A’ Sharqiyah University, Ibra 400, Oman)

  • Sohaib Tahir Chauhdary

    (College of Engineering, Dhofar University, Salalah 211, Oman)

Abstract

The volatility and intermittency of wind energy result in highly unpredictable wind power output, which poses challenges to the stability of the intact power system when integrating large-scale wind power. The accuracy of wind power prediction is critical for maximizing the utilization of wind energy, improving the quality of power supply, and maintaining the stable operation of the power grid. To address this challenge, this paper proposes a novel hybrid forecasting model, referred to as Hybrid WT–PSO–NARMAX, which combines wavelet transform, randomness operator-based particle swarm optimization (ROPSO), and non-linear autoregressive moving average with external inputs (NARMAX). The model is specifically designed for power generation forecasting in wind energy systems, and it incorporates the interactions between the wind system’s supervisory control and data acquisition’s (SCADA) actual power record and numerical weather prediction (NWP) meteorological data for one year. In the proposed model, wavelet transform is utilized to significantly improve the quality of the chaotic meteorological and SCADA data. The NARMAX techniques are used to map the non-linear relationship between the NWP meteorological variables and SCADA wind power. ROPSO is then employed to optimize the parameters of NARMAX to achieve higher forecasting accuracy. The performance of the proposed model is compared with other forecasting strategies, and it outperforms in terms of forecasting accuracy improvement. Additionally, the proposed Prediction Error-Based Power Forecasting (PEBF) approach is introduced, which retrains the model to update the results whenever the difference between forecasted and actual wind powers exceeds a certain limit. The efficiency of the developed scheme is evaluated through a real case study involving a 180 MW grid-connected wind energy system located in Shenyang, China. The proposed model’s forecasting accuracy is evaluated using various assessment metrics, including mean absolute error (MAE) and root mean square error (RMSE), with the average values of MAE and RMSE being 0.27% and 0.30%, respectively. The simulation and numerical results demonstrated that the proposed model accurately predicts wind output power.

Suggested Citation

  • Aamer A. Shah & Almani A. Aftab & Xueshan Han & Mazhar Hussain Baloch & Mohamed Shaik Honnurvali & Sohaib Tahir Chauhdary, 2023. "Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model," Energies, MDPI, vol. 16(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3295-:d:1117701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    2. Yizhen Wang & Ningqing Zhang & Xiong Chen, 2021. "A Short-Term Residential Load Forecasting Model Based on LSTM Recurrent Neural Network Considering Weather Features," Energies, MDPI, vol. 14(10), pages 1-13, May.
    3. Lazić, Lazar & Pejanović, Goran & Živković, Momčilo, 2010. "Wind forecasts for wind power generation using the Eta model," Renewable Energy, Elsevier, vol. 35(6), pages 1236-1243.
    4. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    5. Liu, Hui & Mi, Xiwei & Li, Yanfei, 2018. "An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm," Renewable Energy, Elsevier, vol. 123(C), pages 694-705.
    6. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    7. Jiang, Ping & Wang, Yun & Wang, Jianzhou, 2017. "Short-term wind speed forecasting using a hybrid model," Energy, Elsevier, vol. 119(C), pages 561-577.
    8. Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
    9. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    10. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    2. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    3. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    4. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    5. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    6. Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).
    7. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    8. Jianzhong Zhou & Han Liu & Yanhe Xu & Wei Jiang, 2018. "A Hybrid Framework for Short Term Multi-Step Wind Speed Forecasting Based on Variational Model Decomposition and Convolutional Neural Network," Energies, MDPI, vol. 11(9), pages 1-18, August.
    9. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Mario Tovar & Miguel Robles & Felipe Rashid, 2020. "PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México," Energies, MDPI, vol. 13(24), pages 1-15, December.
    11. Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
    12. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    13. Saeed Salah & Husain R. Alsamamra & Jawad H. Shoqeir, 2022. "Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms," Energies, MDPI, vol. 15(7), pages 1-16, April.
    14. Simon Liebermann & Jung-Sup Um & YoungSeok Hwang & Stephan Schlüter, 2021. "Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts," Energies, MDPI, vol. 14(11), pages 1-21, May.
    15. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    16. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
    17. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    18. Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
    19. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    20. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3295-:d:1117701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.