IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p54-d467705.html
   My bibliography  Save this article

Experimental Study of the Effect of Fuel Catalytic Additive on Specific Fuel Consumption and Exhaust Emissions in Diesel Engine

Author

Listed:
  • Marcin Tkaczyk

    (Department of Automotive Engineering, Wroclaw University of Science and Technology, PL 50-370 Wroclaw, Poland)

  • Zbigniew J. Sroka

    (Department of Automotive Engineering, Wroclaw University of Science and Technology, PL 50-370 Wroclaw, Poland)

  • Konrad Krakowian

    (Department of Automotive Engineering, Wroclaw University of Science and Technology, PL 50-370 Wroclaw, Poland)

  • Radoslaw Wlostowski

    (Department of Automotive Engineering, Wroclaw University of Science and Technology, PL 50-370 Wroclaw, Poland)

Abstract

Fuel catalytic additives have been tested for many years. Herein, their influence on the overall efficiency of combustion engines is investigated, and their pro-ecological impact is assessed. The majority of this research concerns diesel engines. Despite many advantages, to this day, the use of catalytic additives has not become widespread. Wishing to clarify the situation, a research group from the Wroclaw University of Science and Technology decided to investigate this matter, starting with verification tests. This article presents the methodology and results of testing an actual diesel engine, and evaluates the effects of the use of a fuel catalytic additive. The focus was on the analysis of fuel consumption and exhaust gas emissions from a Doosan MD196TI engine. The tested additive was a commercial fuel performance catalyst (FAMAX) with up to 5% ferric chloride as an organometallic compound. The proportion of the mixture with the fuel was 1:2000. These studies provide an energy and ecological assessment of propulsion in inland vehicles relative to current exhaust emission standards. The tests were carried out in accordance with the ISO 8178 standard, albeit on a much broader scale regarding engine operation than required by the standard. In this way, a set of previously published data was more than doubled in scope. Detailed conclusions indicate the positive effect of the tested fuel additive. The emission values decreased, on average by 16.7% for particulate matter (PM), 10.1% for carbon monoxide (CO), and 7.9% for total hydrocarbons (THC). Unfortunately, the amount of nitrogen oxides (NOx) increased by 1.2%. The average difference in specific fuel consumption (BSFC) between the fuel with additive and pure diesel fuel was 0.5%, i.e. below the level of measurement error. The authors formulated the following scientific relationship between the thermal efficiency of the engine and the operation of the catalyst: the effect of the catalyst on the combustion process decreases with the increase of the thermodynamic efficiency of the engine. This conclusion indicates that despite the proven positive effect of catalysts on the combustion process, they can only be used in markets where engines with low thermal efficiency are used, i.e., older generation engines.

Suggested Citation

  • Marcin Tkaczyk & Zbigniew J. Sroka & Konrad Krakowian & Radoslaw Wlostowski, 2020. "Experimental Study of the Effect of Fuel Catalytic Additive on Specific Fuel Consumption and Exhaust Emissions in Diesel Engine," Energies, MDPI, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:54-:d:467705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyung Jun Kim & Sang Hyun Lee & Sang Il Kwon & Sangki Park & Jonghak Lee & Ji Hoon Keel & Jong Tae Lee & Suhan Park, 2020. "Investigation of the Emission Characteristics of Light-Duty Diesel Vehicles in Korea Based on EURO-VI Standards According to Type of After-Treatment System," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2011. "An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine," Energy, Elsevier, vol. 36(10), pages 6004-6009.
    3. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    4. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2013. "The effect of a homogeneous combustion catalyst on exhaust emissions from a single cylinder diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 556-562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2015. "Influence of an iron-based fuel-borne catalyst on physicochemical and toxicological characteristics of particulate emissions from a diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 270-278.
    2. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    3. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2014. "Effect of a homogeneous combustion catalyst on the characteristics of diesel soot emitted from a compression ignition engine," Applied Energy, Elsevier, vol. 113(C), pages 751-757.
    4. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2013. "The effect of a homogeneous combustion catalyst on exhaust emissions from a single cylinder diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 556-562.
    5. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    6. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    7. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    8. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    9. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    10. Khond, Vivek W. & Kriplani, V.M., 2016. "Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1338-1348.
    11. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    12. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Yaqoob, Haseeb & Teoh, Yew Heng & Sher, Farooq & Jamil, Muhammad Ahmad & Ali, Mubbashar & Ağbulut, Ümit & Salam, Hamza Ahmad & Arslan, Muhammad & Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Elfasakh, 2022. "Energy, exergy, sustainability and economic analysis of waste tire pyrolysis oil blends with different nanoparticle additives in spark ignition engine," Energy, Elsevier, vol. 251(C).
    14. Ahmad Fitri Yusop & Rizalman Mamat & Talal Yusaf & Gholamhassan Najafi & Mohd Hafizil Mat Yasin & Akasyah Mohd Khathri, 2018. "Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel," Energies, MDPI, vol. 11(5), pages 1-25, April.
    15. Balamurugan, S. & Sajith, V., 2017. "Experimental investigation on the stability and abrasive action of cerium oxide nanoparticles dispersed diesel," Energy, Elsevier, vol. 131(C), pages 113-124.
    16. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    17. EL-Seesy, Ahmed I. & He, Zhixia & Kosaka, Hidenori, 2021. "Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures," Energy, Elsevier, vol. 214(C).
    18. Barouch Giechaskiel & Fabrizio Forloni & Marcos Otura & Christian Engström & Per Öberg, 2022. "Experimental Comparison of Hub- and Roller-Type Chassis Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(7), pages 1-15, March.
    19. Li, Dun & Gao, Jianmin & Du, Qian & Zhao, Ziqi & Dong, Heming & Cui, Zhaoyang, 2023. "Influence of an iron compound added to coal on soot formation," Energy, Elsevier, vol. 266(C).
    20. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:54-:d:467705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.