IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222031450.html
   My bibliography  Save this article

Influence of an iron compound added to coal on soot formation

Author

Listed:
  • Li, Dun
  • Gao, Jianmin
  • Du, Qian
  • Zhao, Ziqi
  • Dong, Heming
  • Cui, Zhaoyang

Abstract

Soot formation is one major challenge in developing clean and efficient utilizes based on hydrocarbon fuels. We report the physical and chemical characteristics of a set of soot samples obtained from coal and coal mixed with iron nitrate pyrolysis on a drop tube furnace at different reaction times. Yimin lignite was chosen for the experiments, using acid washing to remove its metals and adding iron by impregnation. The pyrolysis processes of the two coal samples were analyzed by TG-DTG, DSC and MS. Characterization was carried out with transmission electron microscopy(TEM), Raman spectrometer, X-ray photoelectron spectroscopy(XPS), and infrared spectroscopy (FTIR). The results show that the iron nitrate significantly reduces the yield of soot and decreases the sizes of the primary soot particles. This inhibition effect on soot production increase with reaction time. With the addition of iron nitrate, the carbon lamellae in soot are more graphitized, but the primary particle surface roughness increases. In addition, the addition of iron results in more aliphatic functional groups and C–O on the surface of the soot.

Suggested Citation

  • Li, Dun & Gao, Jianmin & Du, Qian & Zhao, Ziqi & Dong, Heming & Cui, Zhaoyang, 2023. "Influence of an iron compound added to coal on soot formation," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222031450
    DOI: 10.1016/j.energy.2022.126259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222031450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jingjing & Dou, Binlin & Zhang, Hua & Zhang, Hao & Chen, Haisheng & Xu, Yujie & Wu, Chunfei, 2021. "Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass," Energy, Elsevier, vol. 226(C).
    2. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    3. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2013. "The effect of a homogeneous combustion catalyst on exhaust emissions from a single cylinder diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 556-562.
    5. He, Qing & Cheng, Chen & Zhang, Xinsha & Guo, Qinghua & Ding, Lu & Raheem, Abdul & Yu, Guangsuo, 2022. "Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis," Energy, Elsevier, vol. 244(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almanzalawy, M.S. & Elkady, M.F. & Mori, S. & Elwardany, A.E., 2023. "Quantification of soot nanostructure produced from a diesel engine fueled with C3 ketone," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    2. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    3. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    5. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    6. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    7. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    8. Ruiqing Ma & Yeyue Zhang & Yini Zhang & Xi Li & Zheng Ji, 2023. "The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    9. Miao, Hengyang & Wang, Zhiqing & Wang, Zhefan & Sun, Haochen & Li, Xiangyu & Liu, Zheyu & Dong, Libo & Zhao, Jiantao & Huang, Jiejie & Fang, Yitian, 2022. "Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue," Energy, Elsevier, vol. 255(C).
    10. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    11. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2015. "Influence of an iron-based fuel-borne catalyst on physicochemical and toxicological characteristics of particulate emissions from a diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 270-278.
    12. Zeng, Kuo & Wang, Biao & Xia, Shengpeng & Cui, Chaoxian & Wang, Chenyang & Zheng, Anqing & Zhao, Kun & Zhao, Zengli & Li, Haibin & Isobaev, M.D., 2022. "Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature," Energy, Elsevier, vol. 254(PA).
    13. Jie Yang & Pengfei Liu & Hongquan Song & Changhong Miao & Feng Wang & Yu Xing & Wenjie Wang & Xinyu Liu & Mengxin Zhao, 2021. "Effects of Anthropogenic Emissions from Different Sectors on PM 2.5 Concentrations in Chinese Cities," IJERPH, MDPI, vol. 18(20), pages 1-13, October.
    14. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    15. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    16. Deguang Li & Zhicheng Ding & Jianghuan Liu & Qiurui He & Hamad Naeem, 2022. "Exploring Spatiotemporal Dynamics of PM 2.5 Emission Based on Nighttime Light in China from 2012 to 2018," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    17. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    18. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    19. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Alejandro Lyons Cerón & Alar Konist & Heidi Lees & Oliver Järvik, 2021. "Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas," Sustainability, MDPI, vol. 13(21), pages 1-17, October.

    More about this item

    Keywords

    Soot; Iron; Coal; Pyrolysis;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222031450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.