IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2200-d353291.html
   My bibliography  Save this article

FEM Applied to Building Physics: Modeling Solar Radiation and Heat Transfer of PCM Enhanced Test Cells

Author

Listed:
  • Ana Vaz Sá

    (CONSTRUCT-GEQUALTEC, Civil Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Miguel Azenha

    (ISISE—Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • A.S. Guimarães

    (CONSTRUCT-LFC, Civil Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • J.M.P.Q. Delgado

    (CONSTRUCT-LFC, Civil Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

Abstract

In passive solar buildings, energy can be stored using either sensible heat materials or latent heat materials. Phase change materials (PCM) can contribute to temperature control in passive solar buildings when melting occurs near to comfort temperature required for building’s interior spaces. The use of finite element method (FEM) as a numerical methodology for solving the thermal problem associated with heat transfer in current building materials and PCMs make sense, as it is a well-known technique, generalized and dominated, however, still little applied to the domain of building physics. In this work, a solar model was developed and applied in order to simulate numerically the effect of solar radiation incidence on each face of the test cells (with different solar exposures) without neglecting the main objective of the recommended numerical simulation: the study of the action of PCM. During the experimental campaign, two test cells with distinct inner layers were used to evaluate the effect of solar radiation: (i) REFM test cell (without PCM) with a reference mortar; (ii) PCMM test cell (with PCM) with a PCM mortar. The temperatures monitored inside the REFM and PCMM test cells were compared with the values resulting from the numerical simulation, using FEM with 3D discretization and the explicit modeling of the solar radiation, and the obtained results revealed a significant coherence of values.

Suggested Citation

  • Ana Vaz Sá & Miguel Azenha & A.S. Guimarães & J.M.P.Q. Delgado, 2020. "FEM Applied to Building Physics: Modeling Solar Radiation and Heat Transfer of PCM Enhanced Test Cells," Energies, MDPI, vol. 13(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2200-:d:353291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    2. Li, Min & Wu, Zhishen & Tan, Jinmiao, 2013. "Heat storage properties of the cement mortar incorporated with composite phase change material," Applied Energy, Elsevier, vol. 103(C), pages 393-399.
    3. Kheradmand, Mohammad & Azenha, Miguel & de Aguiar, José L.B. & Castro-Gomes, João, 2016. "Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings," Energy, Elsevier, vol. 94(C), pages 250-261.
    4. Biswas, Kaushik & Lu, Jue & Soroushian, Parviz & Shrestha, Som, 2014. "Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard," Applied Energy, Elsevier, vol. 131(C), pages 517-529.
    5. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    6. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    7. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Musiał & Lech Lichołai & Dušan Katunský, 2023. "Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings," Energies, MDPI, vol. 16(11), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    2. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    3. Wei, Lien Chin & Malen, Jonathan A., 2016. "Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity," Applied Energy, Elsevier, vol. 181(C), pages 224-231.
    4. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    5. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    8. O’Connor, William E. & Warzoha, Ronald & Weigand, Rebecca & Fleischer, Amy S. & Wemhoff, Aaron P., 2014. "Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point," Applied Energy, Elsevier, vol. 132(C), pages 496-506.
    9. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    10. Hlanze, Philani & Jiang, Zhimin & Cai, Jie & Shen, Bo, 2023. "Model-based predictive control of multi-stage air-source heat pumps integrated with phase change material-embedded ceilings," Applied Energy, Elsevier, vol. 336(C).
    11. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    12. Jan Fořt & Jiří Šál & Jan Kočí & Robert Černý, 2020. "Energy Efficiency of Novel Interior Surface Layer with Improved Thermal Characteristics and Its Effect on Hygrothermal Performance of Contemporary Building Envelopes," Energies, MDPI, vol. 13(8), pages 1-17, April.
    13. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    14. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    15. Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    16. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.
    17. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    18. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    19. Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V., 2020. "Low cost and eco-friendly wood fiber-based composite phase change material: Development, characterization and lab-scale thermoregulation performance for thermal energy storage," Energy, Elsevier, vol. 195(C).
    20. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2200-:d:353291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.