IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2023-d347416.html
   My bibliography  Save this article

Testing of Electrical Energy Meters Subject to Realistic Distorted Voltages and Currents

Author

Listed:
  • Lorenzo Bartolomei

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Diego Cavaliere

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Alessandro Mingotti

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Lorenzo Peretto

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Roberto Tinarelli

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

Abstract

This paper presents a study on revenue active electrical energy meters. The huge installation along the distribution network of these devices made them a key element for energy billing, but also for monitoring the grid status. Hence, it is evident that the relevance of guaranteeing a trusty metering performance, and consequently a proper standardization, is needed. The operation of the meters is regulated by standards harmonized with the European Directive 2014/32/EU (known as MID). Still, and not infrequently, compliance to some legacy standards is declared on the device specifications. Thus, a brief comparison between the latest standards is presented. In particular, the focus was set on evaluating the potential impact of the harmonic disturbances on the energy meter accuracy, since they are omnipresent in the modern power networks. The evaluation has been carried out on three off-the-shelf class B meters by means of a new test procedure that considers realistic and quasi-realistic harmonic disturbances. Such tests showed that realistic harmonic disturbances affect significantly only some energy meters. Therefore, the standards should not neglect this kind of scenario.

Suggested Citation

  • Lorenzo Bartolomei & Diego Cavaliere & Alessandro Mingotti & Lorenzo Peretto & Roberto Tinarelli, 2020. "Testing of Electrical Energy Meters Subject to Realistic Distorted Voltages and Currents," Energies, MDPI, vol. 13(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2023-:d:347416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaroslav Shklyarskiy & Zbigniew Hanzelka & Aleksandr Skamyin, 2020. "Experimental Study of Harmonic Influence on Electrical Energy Metering," Energies, MDPI, vol. 13(21), pages 1-13, October.
    2. Renan Quijano Cetina & Yljon Seferi & Steven M. Blair & Paul S. Wright, 2021. "Energy Metering Integrated Circuit Behavior beyond Standards Requirements," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Manyun & Wei, Zhinong & Lin, Yuzhang, 2022. "Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems," Applied Energy, Elsevier, vol. 306(PB).
    2. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    3. Lai, Qingzhi & Ahn, Hyoung Jun & Kim, YoungJin & Kim, You Na & Lin, Xinfan, 2021. "New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery," Applied Energy, Elsevier, vol. 295(C).
    4. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    5. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    6. Sovacool, Benjamin K. & Kivimaa, Paula & Hielscher, Sabine & Jenkins, Kirsten, 2017. "Vulnerability and resistance in the United Kingdom's smart meter transition," Energy Policy, Elsevier, vol. 109(C), pages 767-781.
    7. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    8. Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).
    9. Jieyi Kang & David Reiner, 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Working Papers EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Luis Vargas & Henrry Moyano, 2023. "A Novel Multi-Area Distribution State Estimation Approach with Nodal Redundancy," Energies, MDPI, vol. 16(10), pages 1-19, May.
    11. Song, Shaojian & Xiong, Hao & Lin, Yuzhang & Huang, Manyun & Wei, Zhinong & Fang, Zhi, 2022. "Robust three-phase state estimation for PV-Integrated unbalanced distribution systems," Applied Energy, Elsevier, vol. 322(C).
    12. Kong, Xiangdong & Zheng, Yuejiu & Ouyang, Minggao & Li, Xiangjun & Lu, Languang & Li, Jianqiu & Zhang, Zhendong, 2017. "Signal synchronization for massive data storage in modular battery management system with controller area network," Applied Energy, Elsevier, vol. 197(C), pages 52-62.
    13. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
    14. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2023-:d:347416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.