IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v295y2021ics0306261921004955.html
   My bibliography  Save this article

New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery

Author

Listed:
  • Lai, Qingzhi
  • Ahn, Hyoung Jun
  • Kim, YoungJin
  • Kim, You Na
  • Lin, Xinfan

Abstract

Data optimization, or optimal experiment design, is an effective way to improve and guarantee the accuracy of state and parameter estimation, as the quality of data has significant impact on the estimation accuracy. Such capability is especially critical for energy systems requiring high reliability. The common practice of data optimization is to design input excitation by maximizing the Fisher information, and hence minimizes the variance of the estimation error. However, such approach suffers from fundamental limitations, including negligence of estimation bias and system uncertainties in measurement, model, and parameter, which severely restrict the applicability and effectiveness of the method. This paper aims at establishing new criteria and a novel framework for data optimization and estimation error quantification to overcome the fundamental limitations. First, a generic formula is derived for quantifying the estimation error subject to sensor, model, and parameter uncertainties for the commonly used least-squares algorithm. Based on the formula, desirable data structures, which could minimize the errors caused by each uncertainty, are identified. These structures are then used as new criteria to formulate the novel data optimization framework. The proposed methodology is applied to the parameter estimation problem of a lithium-ion battery electrochemical model in simulation and experiments, showing up to two orders of magnitude improvement in estimation accuracy compared with the traditional Fisher-information-based approach and other baselines.

Suggested Citation

  • Lai, Qingzhi & Ahn, Hyoung Jun & Kim, YoungJin & Kim, You Na & Lin, Xinfan, 2021. "New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery," Applied Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004955
    DOI: 10.1016/j.apenergy.2021.117034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921004955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Weihan & Cao, Decheng & Jöst, Dominik & Ringbeck, Florian & Kuipers, Matthias & Frie, Fabian & Sauer, Dirk Uwe, 2020. "Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries," Applied Energy, Elsevier, vol. 269(C).
    2. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    3. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    4. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    5. Jiang, Lian Lian & Maskell, Douglas L. & Patra, Jagdish C., 2013. "Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm," Applied Energy, Elsevier, vol. 112(C), pages 185-193.
    6. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    7. Bi, Yalan & Choe, Song-Yul, 2020. "An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model," Applied Energy, Elsevier, vol. 258(C).
    8. Song, Ziyou & Hofmann, Heath & Lin, Xinfan & Han, Xuebing & Hou, Jun, 2018. "Parameter identification of lithium-ion battery pack for different applications based on Cramer-Rao bound analysis and experimental study," Applied Energy, Elsevier, vol. 231(C), pages 1307-1318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).
    2. Fahmy, Hend M. & Alqahtani, Ayedh H. & Hasanien, Hany M., 2024. "Precise modeling of lithium-ion battery in industrial applications using Walrus optimization algorithm," Energy, Elsevier, vol. 294(C).
    3. Khosravi, Nima & Dowlatabadi, Masrour & Abdelghany, Muhammad Bakr & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    2. Song, Minseok & Choe, Song-Yul, 2022. "Parameter sensitivity analysis of a reduced-order electrochemical-thermal model for heat generation rate of lithium-ion batteries," Applied Energy, Elsevier, vol. 305(C).
    3. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    4. Xia, Bing & Zhao, Xin & de Callafon, Raymond & Garnier, Hugues & Nguyen, Truong & Mi, Chris, 2016. "Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods," Applied Energy, Elsevier, vol. 179(C), pages 426-436.
    5. Kong, Xiangdong & Zheng, Yuejiu & Ouyang, Minggao & Li, Xiangjun & Lu, Languang & Li, Jianqiu & Zhang, Zhendong, 2017. "Signal synchronization for massive data storage in modular battery management system with controller area network," Applied Energy, Elsevier, vol. 197(C), pages 52-62.
    6. Gu, Yuxuan & Wang, Jianxiao & Chen, Yuanbo & Xiao, Wei & Deng, Zhongwei & Chen, Qixin, 2023. "A simplified electro-chemical lithium-ion battery model applicable for in situ monitoring and online control," Energy, Elsevier, vol. 264(C).
    7. Wang, Ju & Xiong, Rui & Li, Linlin & Fang, Yu, 2018. "A comparative analysis and validation for double-filters-based state of charge estimators using battery-in-the-loop approach," Applied Energy, Elsevier, vol. 229(C), pages 648-659.
    8. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    10. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    12. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    13. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    14. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    15. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    16. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    17. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    18. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    19. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    20. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.