IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6465-d652660.html
   My bibliography  Save this article

The Influence of Power Network Disturbances on Short Delayed Estimation of Fundamental Frequency Based on IpDFT Method with GMSD Windows

Author

Listed:
  • Józef Borkowski

    (Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland)

  • Mirosław Szmajda

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Division of Control Science and Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Janusz Mroczka

    (Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland)

Abstract

This paper presents an application of the IpDFT spectrum interpolation method to estimate the fundamental frequency of a power waveform. Zero-crossing method (ZC) with signal prefiltering was used as a reference method. Test models of disturbances were applied, based on real disturbances recorded in power networks, including voltage harmonics and interharmonics, transient overvoltages, frequency spikes, dips and noise. It was determined that the IpDFT method is characterized by much better dynamic parameters with better estimation precision. In an example, in the presence of interharmonics, the frequency estimation error was three times larger for the reference method than that for the IpDFT method. Furthermore, during the occurrence of fast transient overvoltages, the IpDFT method reached its original accuracy about three times faster than the ZC method. Finally, using IpDFT, it was possible to identify the type of disturbances: impulsive, step changes of frequency or voltage dips.

Suggested Citation

  • Józef Borkowski & Mirosław Szmajda & Janusz Mroczka, 2021. "The Influence of Power Network Disturbances on Short Delayed Estimation of Fundamental Frequency Based on IpDFT Method with GMSD Windows," Energies, MDPI, vol. 14(20), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6465-:d:652660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Gozdowiak, 2020. "Faulty Synchronization of Salient Pole Synchronous Hydro Generator," Energies, MDPI, vol. 13(20), pages 1-21, October.
    2. Soseul Jeong & Junghun Lee & Minhan Yoon & Gilsoo Jang, 2020. "Energy Storage System Event-Driven Frequency Control Using Neural Networks to Comply with Frequency Grid Code," Energies, MDPI, vol. 13(7), pages 1-17, April.
    3. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Leonowicz & Michal Jasinski, 2022. "Machine Learning and Data Mining Applications in Power Systems," Energies, MDPI, vol. 15(5), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoshuai Bi & Likun Wang & Fabrizio Marignetti & Minghao Zhou, 2021. "Research on Electromagnetic Field, Eddy Current Loss and Heat Transfer in the End Region of Synchronous Condenser with Different End Structures and Material Properties," Energies, MDPI, vol. 14(15), pages 1-15, July.
    2. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    3. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    4. Stevens, Kelly A. & Iman, Sara & Davis, Kristopher O., 2022. "The cost of utility discretion on residential solar requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    6. Zdravko Matišić & Tomislav Antić & Juraj Havelka & Tomislav Capuder, 2024. "Voltage Frequency Differential Protection Algorithm," Energies, MDPI, vol. 17(8), pages 1-18, April.
    7. Rodolfo V. Rocha & Renato M. Monaro, 2023. "Algorithm for Fast Detection of Stator Turn Faultsin Variable-Speed Synchronous Generators," Energies, MDPI, vol. 16(5), pages 1-23, March.
    8. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    9. Amer S. Alsalman & Talal Alharbi & Ahmed A. Mahfouz, 2023. "Enhancing the Stability of an Isolated Electric Grid by the Utilization of Energy Storage Systems: A Case Study on the Rafha Grid," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    10. Aravind Chellachi Kathiresan & Jeyaraj PandiaRajan & Asokan Sivaprakash & Thanikanti Sudhakar Babu & Md. Rabiul Islam, 2020. "An Adaptive Feed-Forward Phase Locked Loop for Grid Synchronization of Renewable Energy Systems under Wide Frequency Deviations," Sustainability, MDPI, vol. 12(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6465-:d:652660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.