IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p13269-d1232790.html
   My bibliography  Save this article

Enhancing the Stability of an Isolated Electric Grid by the Utilization of Energy Storage Systems: A Case Study on the Rafha Grid

Author

Listed:
  • Amer S. Alsalman

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Qassim, Saudi Arabia)

  • Talal Alharbi

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Qassim, Saudi Arabia)

  • Ahmed A. Mahfouz

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Qassim, Saudi Arabia)

Abstract

A system’s stability is affected by the generation types in the interconnected power system. For example, synchronous generators usually have high inertia sharing with the power system since they have rotating mass, and they usually have primary frequency response capability. On the other hand, renewable energy sources (RES) neither provide inertia to the system nor have a primary frequency response capability; hence, adding RES will impact the power system’s voltage, angle, and frequency stability. Battery energy storage systems (BESSs) have many applications in the future electric grid. From the stability perspective, BESSs can be used to increase the power system’s stability. A case study was conducted on the Rafha microgrid in the Kingdom of Saudi Arabia (KSA) to inspect a BESS’s influence on the Rafha microgrid’s stability and the impact of changing the BESS’s location, which might cause changes in the system stability after contingencies. In addition, we investigated which dynamic stability is affected if the BESS’s capacity changes. The microgrid is tested using contingencies that affect the system’s frequency, angle, and voltage stability using the power system simulator for engineering (PSS/E) software as a simulation platform. Finally, we investigated the technical impact of utilizing a BESS and its influence on economic operation.

Suggested Citation

  • Amer S. Alsalman & Talal Alharbi & Ahmed A. Mahfouz, 2023. "Enhancing the Stability of an Isolated Electric Grid by the Utilization of Energy Storage Systems: A Case Study on the Rafha Grid," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13269-:d:1232790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/13269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/13269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    2. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Johannes Urpelainen & Thijs Van de Graaf, 2015. "The International Renewable Energy Agency: a success story in institutional innovation?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(2), pages 159-177, May.
    4. Soseul Jeong & Junghun Lee & Minhan Yoon & Gilsoo Jang, 2020. "Energy Storage System Event-Driven Frequency Control Using Neural Networks to Comply with Frequency Grid Code," Energies, MDPI, vol. 13(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    2. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    3. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    4. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    5. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    6. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    8. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    9. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    10. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    11. Richard Hosier & Morgan Bazilian & Tatia Lemondzhava & Kabir Malik & Mitsunori Motohashi & David Vilar de Ferrenbach, 2017. "Rural Electrification Concessions in Africa," World Bank Publications - Reports 27476, The World Bank Group.
    12. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    13. Indra Overland & Gunilla Reischl, 2018. "A place in the Sun? IRENA’s position in the global energy governance landscape," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(3), pages 335-350, June.
    14. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    15. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    16. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    17. Tina, Giuseppe Marco & Aneli, Stefano & Gagliano, Antonio, 2022. "Technical and economic analysis of the provision of ancillary services through the flexibility of HVAC system in shopping centers," Energy, Elsevier, vol. 258(C).
    18. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    19. Kontis, Eleftherios O. & Rodríguez del Nozal, Alvaro & Dimoulias, Stelios C. & Mauricio, Juan M., 2024. "Dynamic equivalent model of active distribution networks providing frequency-related ancillary services to the transmission system," Applied Energy, Elsevier, vol. 367(C).
    20. Pritee Sharma & Salla Nithyanth Kumar, 2020. "The global governance of water, energy, and food nexus: allocation and access for competing demands," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 377-391, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13269-:d:1232790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.