IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1477-d335123.html
   My bibliography  Save this article

Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications

Author

Listed:
  • Arun Mambazhasseri Divakaran

    (Department of Mechanical Engineering, De Montfort University, Leicester LE1 9BH, UK)

  • Dean Hamilton

    (Emerging Technologies Research Centre, De Montfort University, Leicester LE1 9BH, UK)

  • Krishna Nama Manjunatha

    (Emerging Technologies Research Centre, De Montfort University, Leicester LE1 9BH, UK)

  • Manickam Minakshi

    (Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia)

Abstract

The performance, energy storage capacity, safety, and lifetime of lithium-ion battery cells of different chemistries are very sensitive to operating and environmental temperatures. The cells generate heat by current passing through their internal resistances, and chemical reactions can generate additional, sometimes uncontrollable, heat if the temperature within the cells reaches the trigger temperature. Therefore, a high-performance battery cooling system that maintains cells as close to the ideal temperature as possible is needed to enable the highest possible discharge current rates while still providing a sufficient safety margin. This paper presents a novel design, preliminary development, and results for an inexpensive reusable, liquid-cooled, modular, hexagonal battery module that may be suitable for some mobile and stationary applications that have high charge and or discharge rate requirements. The battery temperature rise was measured experimentally for a six parallel 18650 cylindrical cell demonstrator module over complete discharge cycles at discharge rates of 1C, 2C and 3C. The measured temperature rises at the hottest point in the cells, at the anode terminal, were found to be 6, 17 and 22 °C, respectively. The thermal resistance of the system was estimated to be below 0.2 K/W at a coolant flow rate of 0.001 Kg/s. The proposed liquid cooled module appeared to be an effective solution for maintaining cylindrical Li-ion cells close to their optimum working temperature.

Suggested Citation

  • Arun Mambazhasseri Divakaran & Dean Hamilton & Krishna Nama Manjunatha & Manickam Minakshi, 2020. "Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications," Energies, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1477-:d:335123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    2. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    3. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjie Zhao & Bin Zhang & Xiaoli Fu & Shenglin Yan, 2021. "Numerical Study on the Influence of Vortex Generator Arrangement on Heat Transfer Enhancement of Oil-Cooled Motor," Energies, MDPI, vol. 14(21), pages 1-17, October.
    2. Robby Dwianto Widyantara & Muhammad Adnan Naufal & Poetro Lebdo Sambegoro & Ignatius Pulung Nurprasetio & Farid Triawan & Djati Wibowo Djamari & Asep Bayu Dani Nandiyanto & Bentang Arief Budiman & Muh, 2021. "Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle," Energies, MDPI, vol. 14(23), pages 1-14, November.
    3. Prince Waqas Khan & Yung-Cheol Byun, 2021. "Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    4. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    5. Eman Hassan & Mahdi Amiriyan & Dominic Frisone & Joshua Dunham & Rashid Farahati & Siamak Farhad, 2022. "Effects of Coating on the Electrochemical Performance of a Nickel-Rich Cathode Active Material," Energies, MDPI, vol. 15(13), pages 1-15, July.
    6. Nan Zhou & Xiulong Cui & Changhao Han & Zhou Yang, 2022. "Analysis of Acoustic Characteristics under Battery External Short Circuit Based on Acoustic Emission," Energies, MDPI, vol. 15(5), pages 1-16, February.
    7. Qi Wang & Tian Gao & Xingcan Li, 2022. "SOC Estimation of Lithium-Ion Battery Based on Equivalent Circuit Model with Variable Parameters," Energies, MDPI, vol. 15(16), pages 1-15, August.
    8. Xi Luo & Jorge Varela Barreras & Clementine L. Chambon & Billy Wu & Efstratios Batzelis, 2021. "Hybridizing Lead–Acid Batteries with Supercapacitors: A Methodology," Energies, MDPI, vol. 14(2), pages 1-27, January.
    9. Luiz Henrique Meneghetti & Edivan Laercio Carvalho & Emerson Giovani Carati & Gustavo Weber Denardin & Jean Patric da Costa & Carlos Marcelo de Oliveira Stein & Rafael Cardoso, 2022. "Hybrid Inverter and Control Strategy for Enabling the PV Generation Dispatch Using Extra-Low-Voltage Batteries," Energies, MDPI, vol. 15(20), pages 1-20, October.
    10. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    11. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    12. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    13. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads," Energies, MDPI, vol. 13(19), pages 1-24, October.
    14. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    15. Jura Jurčević & Ivan Pavić & Nikolina Čović & Denis Dolinar & Davor Zoričić, 2022. "Estimation of Internal Rate of Return for Battery Storage Systems with Parallel Revenue Streams: Cycle-Cost vs. Multi-Objective Optimisation Approach," Energies, MDPI, vol. 15(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    2. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    3. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    4. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    5. Wei, Peng & Li, Han-Xiong, 2022. "Multiscale dynamic construction for abnormality detection and localization of Li-ion batteries," Applied Energy, Elsevier, vol. 325(C).
    6. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    7. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    8. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    9. Anisa Surya Wijareni & Hendri Widiyandari & Agus Purwanto & Aditya Farhan Arif & Mohammad Zaki Mubarok, 2022. "Morphology and Particle Size of a Synthesized NMC 811 Cathode Precursor with Mixed Hydroxide Precipitate and Nickel Sulfate as Nickel Sources and Comparison of Their Electrochemical Performances in an," Energies, MDPI, vol. 15(16), pages 1-15, August.
    10. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    11. Sun, Shulei & Ma, Chunyu & Wang, Xiyu & Yang, Ye & Mei, Jun, 2024. "Design and optimisation of a novel serpentine flow channel with branch structure," Energy, Elsevier, vol. 293(C).
    12. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    13. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    14. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Harika Dasari & Eric Eisenbraun, 2021. "Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-16, March.
    17. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    19. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    20. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1477-:d:335123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.