IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5859-d886682.html
   My bibliography  Save this article

Estimation of Internal Rate of Return for Battery Storage Systems with Parallel Revenue Streams: Cycle-Cost vs. Multi-Objective Optimisation Approach

Author

Listed:
  • Jura Jurčević

    (Faculty of Economics & Business, University of Zagreb, 10000 Zagreb, Croatia)

  • Ivan Pavić

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Nikolina Čović

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Denis Dolinar

    (Faculty of Economics & Business, University of Zagreb, 10000 Zagreb, Croatia)

  • Davor Zoričić

    (Faculty of Economics & Business, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

This paper assesses the profitability of battery storage systems (BSS) by focusing on the internal rate of return (IRR) as a profitability measure which offers advantages over other frequently used measures, most notably the net present value (NPV). Furthermore, this study proposes a multi-objective optimisation (MOO) approach to IRR estimation instead of relying on the simple linear optimisation and compares the results to the popular linear optimisation with battery cycle-cost penalty. The analysis is conducted under perfect foresight conditions by considering multiple revenue streams: arbitrage trading in the day-ahead and intraday markets, peak shaving, participating in the primary reserves market, and from photovoltaic (PV) power-generation unit. Data are collected for the German power market for 2017 and 2021. The results show that MOO approach yields similar IRR estimates to the cycle-cost model in 2017. However, higher market volatility and increased electricity prices in 2021 resulted in tangible differences. The analysis shows that, if such conditions are coupled with a low battery capacity price, the MOO method significantly outperforms the cycle-cost model. The effects of battery calendar lifetime and state of charge which decrease profitability are also considered. Nevertheless, a noticeable rise in profitability in 2021 relative to 2017 could provide enough compensation to address the issue of relatively poor viability track record.

Suggested Citation

  • Jura Jurčević & Ivan Pavić & Nikolina Čović & Denis Dolinar & Davor Zoričić, 2022. "Estimation of Internal Rate of Return for Battery Storage Systems with Parallel Revenue Streams: Cycle-Cost vs. Multi-Objective Optimisation Approach," Energies, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5859-:d:886682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norberto Martinez & Alejandra Tabares & John F. Franco, 2021. "Generation of Alternative Battery Allocation Proposals in Distribution Systems by the Optimization of Different Economic Metrics within a Mathematical Model," Energies, MDPI, vol. 14(6), pages 1-17, March.
    2. Bordin, Chiara & Anuta, Harold Oghenetejiri & Crossland, Andrew & Gutierrez, Isabel Lascurain & Dent, Chris J. & Vigo, Daniele, 2017. "A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration," Renewable Energy, Elsevier, vol. 101(C), pages 417-430.
    3. Barbero, Mattia & Corchero, Cristina & Canals Casals, Lluc & Igualada, Lucia & Heredia, F.-Javier, 2020. "Critical evaluation of European balancing markets to enable the participation of Demand Aggregators," Applied Energy, Elsevier, vol. 264(C).
    4. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    5. Guannan He & Qixin Chen & Panayiotis Moutis & Soummya Kar & Jay F. Whitacre, 2018. "An intertemporal decision framework for electrochemical energy storage management," Nature Energy, Nature, vol. 3(5), pages 404-412, May.
    6. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    7. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    8. Arun Mambazhasseri Divakaran & Dean Hamilton & Krishna Nama Manjunatha & Manickam Minakshi, 2020. "Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications," Energies, MDPI, vol. 13(6), pages 1-22, March.
    9. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Stephen Comello & Stefan Reichelstein, 2019. "The emergence of cost effective battery storage," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    2. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    3. Palm, J. & Kojonsaari, A.-R. & Öhrlund, I. & Fowler, N. & Bartusch, C., 2023. "Drivers and barriers to participation in Sweden's local flexibility markets for electricity," Utilities Policy, Elsevier, vol. 82(C).
    4. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    5. Davor Zoričić & Goran Knežević & Marija Miletić & Denis Dolinar & Danijela Miloš Sprčić, 2022. "Integrated Risk Analysis of Aggregators: Policy Implications for the Development of the Competitive Aggregator Industry," Energies, MDPI, vol. 15(14), pages 1-22, July.
    6. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    7. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    9. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    10. Kim, James Hyungkwan & Kahrl, Fredrich & Mills, Andrew & Wiser, Ryan & Montañés, Cristina Crespo & Gorman, Will, 2023. "Economic evaluation of variable renewable energy participation in U.S. ancillary services markets," Utilities Policy, Elsevier, vol. 82(C).
    11. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    12. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    14. Xiaotong Shuai & Roger Raufer, 2021. "Behind‐the‐meter energy storage in China: Lessons from California's approach," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    15. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    16. Lavin, Luke & Apt, Jay, 2021. "The importance of peak pricing in realizing system benefits from distributed storage," Energy Policy, Elsevier, vol. 157(C).
    17. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    18. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    19. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    20. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5859-:d:886682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.