IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5485-d431753.html
   My bibliography  Save this article

Global Sliding-Mode Suspension Control of Bearingless Switched Reluctance Motor under Eccentric Faults to Increase Reliability of Motor

Author

Listed:
  • Pulivarthi Nageswara Rao

    (Department of Electrical Electronics and Communication Engineering, GITAM (Deemed to be University), Visakhapatnam 530045, India)

  • Ramesh Devarapalli

    (Department of Electrical Engineering, IIT (ISM), Dhanbad 826004, India)

  • Fausto Pedro García Márquez

    (Ingenium Research Group, University of Castilla-La Mancha, 13071 Ciudad Real, Spain)

  • Hasmat Malik

    (BEARS, University Town, NUS Campus, Singapore 138602, Singapore)

Abstract

Bearingless motor development is a substitute for magnetic bearing motors owing to several benefits, such as nominal repairs, compactness, lower cost, and no need for high-power amplifiers. Compared to conventional motors, rotor levitation and its steady control is an additional duty in bearingless switched reluctance motors when starting. For high-speed applications, the use of simple proportional integral derivative and fuzzy control schemes are not in effect in suspension control of the rotor owing to inherent parameter variations and external suspension loads. In this paper, a new robust global sliding-mode controller is suggested to control rotor displacements and their positions to ensure fewer eccentric rotor displacements when a bearingless switched reluctance motor is subjected to different parameter variations and loads. Extra exponential fast-decaying nonlinear functions and rotor-tracking error functions have been used in the modeling of the global sliding-mode switching surface. Simulation studies have been conducted under different testing conditions. From the results, it is shown that rotor displacements and suspension forces in X and Y directions are robust and stable. Owing to the proposed control action of the suspension phase currents, the rotor always comes back rapidly to the center position under any uncertainty.

Suggested Citation

  • Pulivarthi Nageswara Rao & Ramesh Devarapalli & Fausto Pedro García Márquez & Hasmat Malik, 2020. "Global Sliding-Mode Suspension Control of Bearingless Switched Reluctance Motor under Eccentric Faults to Increase Reliability of Motor," Energies, MDPI, vol. 13(20), pages 1-38, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5485-:d:431753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    2. Ahmed Chaibet & Moussa Boukhnifer & Nadir Ouddah & Eric Monmasson, 2020. "Experimental Sensorless Control of Switched Reluctance Motor for Electrical Powertrain System," Energies, MDPI, vol. 13(12), pages 1-15, June.
    3. Pinar Pérez, Jesús María & García Márquez, Fausto Pedro & Tobias, Andrew & Papaelias, Mayorkinos, 2013. "Wind turbine reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 463-472.
    4. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    5. Hui Cai & Hui Wang & Mengqiu Li & Shiqi Shen & Yaojing Feng & Jian Zheng, 2018. "Torque Ripple Reduction for Switched Reluctance Motor with Optimized PWM Control Strategy," Energies, MDPI, vol. 11(11), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si-Woo Song & Won-Ho Kim & Ju Lee & Dong-Hoon Jung, 2023. "A Study on Weight Reduction and High Performance in Separated Magnetic Bearings," Energies, MDPI, vol. 16(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    2. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    3. Fausto Pedro García Marquez & Carlos Quiterio Gómez Muñoz, 2020. "A New Approach for Fault Detection, Location and Diagnosis by Ultrasonic Testing," Energies, MDPI, vol. 13(5), pages 1-13, March.
    4. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    5. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    6. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    7. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    8. Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Assessing the Factors Impacting on the Reliability of Wind Turbines via Survival Analysis—A Case Study," Energies, MDPI, vol. 11(11), pages 1-20, November.
    9. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    10. Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
    11. Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
    12. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    14. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
    16. Tongke Yuan & Zhifeng Sun & Shihao Ma, 2019. "Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection," Energies, MDPI, vol. 12(22), pages 1-20, November.
    17. Estefania Artigao & Sofia Koukoura & Andrés Honrubia-Escribano & James Carroll & Alasdair McDonald & Emilio Gómez-Lázaro, 2018. "Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train," Energies, MDPI, vol. 11(4), pages 1-18, April.
    18. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    19. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    20. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5485-:d:431753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.