IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1140-d328043.html
   My bibliography  Save this article

Variability in Measured Real-World Operational Energy Use and Emission Rates of a Plug-In Hybrid Electric Vehicle

Author

Listed:
  • H. Christopher Frey

    (Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • Xiaohui Zheng

    (Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • Jiangchuan Hu

    (Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA)

Abstract

Compared to comparably sized conventional light duty gasoline vehicles (CLDGVs), plug-in hybrid electric vehicles (PHEVs) may offer benefits of improved energy economy, reduced emissions, and the flexibility to use electricity as an energy source. PHEVs operate in either charge depleting (CD) or charge sustaining (CS) mode; the engine has the ability to turn on and off; and the engine can have multiple cold starts. A method is demonstrated for quantifying the real-world activity, energy use, and emissions of PHEVs, taking into account these operational characteristics and differences in electricity generation resource mix. A 2013 Toyota Prius plug-in was measured using a portable emission measurement system. Vehicle specific power (VSP) based modal average energy use and emission rates are inferred to assess trends in energy use and emissions with respect to engine load and for comparisons of engine on versus engine off, and cold start versus hot stabilized running. The results show that, compared to CLDGVs, the PHEV operating in CD mode has improved energy efficiency and lower CO 2 , CO, HC, NO x , and PM 2.5 emission rates for a wide range of power generation fuel mixes. However, PHEV energy use and emission rates are highly variable, with periods of relatively high on-road emission rates related to cold starts.

Suggested Citation

  • H. Christopher Frey & Xiaohui Zheng & Jiangchuan Hu, 2020. "Variability in Measured Real-World Operational Energy Use and Emission Rates of a Plug-In Hybrid Electric Vehicle," Energies, MDPI, vol. 13(5), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1140-:d:328043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federico Millo & Luciano Rolando & Rocco Fuso, 2014. "Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO 2 Emissions and Operating Costs," Energies, MDPI, vol. 7(7), pages 1-17, July.
    2. Brett Williams & Elliot Martin & Timothy Lipman & Daniel Kammen, 2011. "Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California," Energies, MDPI, vol. 4(3), pages 1-23, March.
    3. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    4. Boya Zhou & Shaojun Zhang & Ye Wu & Wenwei Ke & Xiaoyi He & Jiming Hao, 2018. "Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 735-756, June.
    5. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Fernandes, P. & Tomás, R. & Ferreira, E. & Bahmankhah, B. & Coelho, M.C., 2021. "Driving aggressiveness in hybrid electric vehicles: Assessing the impact of driving volatility on emission rates," Applied Energy, Elsevier, vol. 284(C).
    3. Witsarut Achariyaviriya & Wongkot Wongsapai & Kittitat Janpoom & Tossapon Katongtung & Yuttana Mona & Nakorn Tippayawong & Pana Suttakul, 2023. "Estimating Energy Consumption of Battery Electric Vehicles Using Vehicle Sensor Data and Machine Learning Approaches," Energies, MDPI, vol. 16(17), pages 1-14, September.
    4. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    5. Andrzej Ziółkowski & Paweł Fuć & Aleks Jagielski & Maciej Bednarek & Szymon Konieczka, 2023. "Comparison of the Energy Consumption and Exhaust Emissions between Hybrid and Conventional Vehicles, as Well as Electric Vehicles Fitted with a Range Extender," Energies, MDPI, vol. 16(12), pages 1-17, June.
    6. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings," Energies, MDPI, vol. 14(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    2. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    3. Deidre Wolff & Lluc Canals Casals & Gabriela Benveniste & Cristina Corchero & Lluís Trilla, 2019. "The Effects of Lithium Sulfur Battery Ageing on Second-Life Possibilities and Environmental Life Cycle Assessment Studies," Energies, MDPI, vol. 12(12), pages 1-19, June.
    4. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    5. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    6. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    7. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    8. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    9. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.
    10. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    11. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    12. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2024. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Applied Energy, Elsevier, vol. 371(C).
    13. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    14. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    15. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    16. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
    17. Traut, Elizabeth & Hendrickson, Chris & Klampfl, Erica & Liu, Yimin & Michalek, Jeremy J., 2012. "Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost," Energy Policy, Elsevier, vol. 51(C), pages 524-534.
    18. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
    19. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    20. Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2016. "Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles," Energy, Elsevier, vol. 115(P3), pages 1617-1622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1140-:d:328043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.