IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p543-d312055.html
   My bibliography  Save this article

Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO 2 Capture in Natural Gas-Fired Power Plants

Author

Listed:
  • Manuele Gatti

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
    LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

  • Emanuele Martelli

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Daniele Di Bona

    (LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

  • Marco Gabba

    (LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

  • Roberto Scaccabarozzi

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
    LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

  • Maurizio Spinelli

    (LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

  • Federico Viganò

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
    LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

  • Stefano Consonni

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
    LEAP (Laboratorio Energia e Ambiente Piacenza), Via Nino Bixio 27/C, 29121 Piacenza, Italy)

Abstract

The objective of this study is to assess the technical and economic potential of four alternative processes suitable for post-combustion CO 2 capture from natural gas-fired power plants. These include: CO 2 permeable membranes; molten carbonate fuel cells (MCFCs); pressurized CO 2 absorption integrated with a multi-shaft gas turbine and heat recovery steam cycle; and supersonic flow-driven CO 2 anti-sublimation and inertial separation. A common technical and economic framework is defined, and the performance and costs of the systems are evaluated based on process simulations and preliminary sizing. A state-of-the-art natural gas combined cycle (NGCC) without CO 2 capture is taken as the reference case, whereas the same NGCC designed with CO 2 capture (using chemical absorption with aqueous monoethanolamine solvent) is used as a base case. In an additional benchmarking case, the same NGCC is equipped with aqueous piperazine (PZ) CO 2 absorption, to assess the techno-economic perspective of an advanced amine solvent. The comparison highlights that a combined cycle integrated with MCFCs looks the most attractive technology, both in terms of energy penalty and economics, i.e., CO 2 avoided cost of 49 $/t CO2 avoided, and the specific primary energy consumption per unit of CO 2 avoided (SPECCA) equal to 0.31 MJ LHV /kg CO2 avoided. The second-best capture technology is PZ scrubbing (SPECCA = 2.73 MJ LHV /kg CO2 avoided and cost of CO 2 avoided = 68 $/t CO2 avoided), followed by the monoethanolamine (MEA) base case (SPECCA = 3.34 MJ LHV /kg CO2 avoided and cost of CO 2 avoided = 75 $/t CO2 avoided), and the supersonic flow driven CO 2 anti-sublimation and inertial separation system and CO 2 permeable membranes. The analysis shows that the integrated MCFC–NGCC systems allow the capture of CO 2 with considerable reductions in energy penalty and costs.

Suggested Citation

  • Manuele Gatti & Emanuele Martelli & Daniele Di Bona & Marco Gabba & Roberto Scaccabarozzi & Maurizio Spinelli & Federico Viganò & Stefano Consonni, 2020. "Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO 2 Capture in Natural Gas-Fired Power Plants," Energies, MDPI, vol. 13(3), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:543-:d:312055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campanari, Stefano & Manzolini, Giampaolo & Chiesa, Paolo, 2013. "Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming," Applied Energy, Elsevier, vol. 112(C), pages 772-783.
    2. Campanari, S. & Chiesa, P. & Manzolini, G. & Bedogni, S., 2014. "Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 130(C), pages 562-573.
    3. Manzolini, G. & Sanchez Fernandez, E. & Rezvani, S. & Macchi, E. & Goetheer, E.L.V. & Vlugt, T.J.H., 2015. "Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology," Applied Energy, Elsevier, vol. 138(C), pages 546-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scaccabarozzi, R. & Gatti, M. & Campanari, S. & Martelli, E., 2021. "Solid oxide semi-closed CO2 cycle: A hybrid power cycle with 75% net efficiency and zero emissions," Applied Energy, Elsevier, vol. 290(C).
    2. Alberto Fichera & Samiran Samanta & Rosaria Volpe, 2022. "Exergetic Analysis of a Natural Gas Combined-Cycle Power Plant with a Molten Carbonate Fuel Cell for Carbon Capture," Sustainability, MDPI, vol. 14(1), pages 1-16, January.
    3. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    4. Paweł Gładysz & Anna Sowiżdżał & Maciej Miecznik & Maciej Hacaga & Leszek Pająk, 2020. "Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland," Energies, MDPI, vol. 13(11), pages 1-34, June.
    5. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    6. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    7. Strojny, Magdalena & Gładysz, Paweł & Hanak, Dawid P. & Nowak, Wojciech, 2023. "Comparative analysis of CO2 capture technologies using amine absorption and calcium looping integrated with natural gas combined cycle power plant," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    2. Akrami, Ehsan & Ameri, Mohammad & Rocco, Matteo V., 2021. "Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power productio," Energy, Elsevier, vol. 227(C).
    3. Jing Bian & Liqiang Duan & Yongping Yang, 2023. "Simulation and Economic Investigation of CO 2 Separation from Gas Turbine Exhaust Gas by Molten Carbonate Fuel Cell with Exhaust Gas Recirculation and Selective Exhaust Gas Recirculation," Energies, MDPI, vol. 16(8), pages 1-21, April.
    4. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    5. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    6. Martin Haaf & Peter Ohlemüller & Jochen Ströhle & Bernd Epple, 2020. "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 149-164, February.
    7. Duan, Liqiang & Zhu, Jingnan & Yue, Long & Yang, Yongping, 2014. "Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell," Energy, Elsevier, vol. 74(C), pages 417-427.
    8. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    9. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    10. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    11. Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
    12. Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    13. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    14. Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
    15. Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.
    16. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    17. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    18. Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
    19. McLarty, Dustin & Brouwer, Jack, 2014. "Poly-generating closed cathode fuel cell with carbon capture," Applied Energy, Elsevier, vol. 131(C), pages 108-116.
    20. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:543-:d:312055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.