IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6604-d462027.html
   My bibliography  Save this article

Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model

Author

Listed:
  • Yuan Song

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon 24341, Gangwon, Korea)

  • Insu Paek

    (Department of Integrated Energy & Infra System, Kangwon National University, Chuncheon 24341, Gangwon, Korea
    Department of Mechatronics Engineering, Kangwon National University, Chuncheon 24341, Gangwon, Korea)

Abstract

In this study, dynamic simulations of a wind turbine were performed to predict its dynamic performance, and the results were experimentally validated. The dynamic simulation received time-domain wind speed and direction data and predicted the power output by applying control algorithms. The target wind turbine for the simulation was a 2 MW wind turbine installed in an onshore wind farm. The wind speed and direction data for the simulation were obtained from WindSim, which is a commercial computational fluid dynamics (CFD) code for wind farm design, and measured wind speed and direction data with a mast were used for WindSim. For the simulation, the wind turbine controller was tuned to match the power curve of the target wind turbine. The dynamic simulation was performed for a period of one year, and the results were compared with the results from WindSim and the measurement. It was found from the comparison that the annual energy production (AEP) of a wind turbine can be accurately predicted using a dynamic wind turbine model with a controller that takes into account both power regulations and yaw actions with wind speed and direction data obtained from WindSim.

Suggested Citation

  • Yuan Song & Insu Paek, 2020. "Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6604-:d:462027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhunny, A.Z. & Lollchund, M.R. & Rughooputh, S.D.D.V., 2017. "Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD)," Renewable Energy, Elsevier, vol. 101(C), pages 1-9.
    2. Cheng-Dar Yue & Che-Chih Liu & Chien-Cheng Tu & Ta-Hui Lin, 2019. "Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources," Energies, MDPI, vol. 12(4), pages 1-24, February.
    3. Daniel Tabas & Jiannong Fang & Fernando Porté-Agel, 2019. "Wind Energy Prediction in Highly Complex Terrain by Computational Fluid Dynamics," Energies, MDPI, vol. 12(7), pages 1-12, April.
    4. Hyungyu Kim & Kwansu Kim & Insu Paek, 2019. "A Study on the Effect of Closed-Loop Wind Farm Control on Power and Tower Load in Derating the TSO Command Condition," Energies, MDPI, vol. 12(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo De Blasis & Giovanni Batista Masala & Filippo Petroni, 2021. "A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm," Energies, MDPI, vol. 14(2), pages 1-16, January.
    2. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Hao Liu & Jixing Chen & Jing Zhang & Yining Chen & Yafeng Wen & Xiaoyang Zhang & Zhongjie Yan & Qingan Li, 2023. "Study on Atmospheric Stability and Wake Attenuation Constant of Large Offshore Wind Farm in Yellow Sea," Energies, MDPI, vol. 16(5), pages 1-15, February.
    4. Dongmyoung Kim & Taesu Jeon & Insu Paek & Daeyoung Kim, 2022. "A Study on Available Power Estimation Algorithm and Its Validation," Energies, MDPI, vol. 15(7), pages 1-14, April.
    5. Shaima A. Alnaqbi & Abdul Hai Alami, 2023. "Sustainability and Renewable Energy in the UAE: A Case Study of Sharjah," Energies, MDPI, vol. 16(20), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    3. Shih-Chieh Liao & Shih-Chieh Chang & Tsung-Chi Cheng, 2021. "Managing the Volatility Risk of Renewable Energy: Index Insurance for Offshore Wind Farms in Taiwan," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    4. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    5. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    6. Sarah Jamal Mattar & Mohammad Reza Kavian Nezhad & Michael Versteege & Carlos F. Lange & Brian A. Fleck, 2021. "Validation Process for Rooftop Wind Regime CFD Model in Complex Urban Environment Using an Experimental Measurement Campaign," Energies, MDPI, vol. 14(9), pages 1-19, April.
    7. Dhunny, A.Z. & Allam, Z. & Lobine, D. & Lollchund, M.R., 2019. "Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective," Energy, Elsevier, vol. 185(C), pages 1282-1297.
    8. Timmons, D. & Dhunny, A.Z. & Elahee, K. & Havumaki, B. & Howells, M. & Khoodaruth, A. & Lema-Driscoll, A.K. & Lollchund, M.R. & Ramgolam, Y.K. & Rughooputh, S.D.D.V. & Surroop, D., 2019. "Cost minimization for fully renewable electricity systems: A Mauritius case study," Energy Policy, Elsevier, vol. 133(C).
    9. Shaohui Li & Xuejin Sun & Riwei Zhang & Chuanliang Zhang, 2019. "A Feasibility Study of Simulating the Micro-Scale Wind Field for Wind Energy Applications by NWP/CFD Model with Improved Coupling Method and Data Assimilation," Energies, MDPI, vol. 12(13), pages 1-19, July.
    10. Kristian Skeie & Arild Gustavsen, 2021. "Utilising Open Geospatial Data to Refine Weather Variables for Building Energy Performance Evaluation—Incident Solar Radiation and Wind-Driven Infiltration Modelling," Energies, MDPI, vol. 14(4), pages 1-32, February.
    11. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
    12. Takanori Uchida & Yasushi Kawashima, 2019. "New Assessment Scales for Evaluating the Degree of Risk of Wind Turbine Blade Damage Caused by Terrain-Induced Turbulence," Energies, MDPI, vol. 12(13), pages 1-27, July.
    13. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    14. Takanori Uchida & Kenichiro Sugitani, 2020. "Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain," Energies, MDPI, vol. 13(15), pages 1-38, July.
    15. Francesco Castellani & Marco Buzzoni & Davide Astolfi & Gianluca D’Elia & Giorgio Dalpiaz & Ludovico Terzi, 2017. "Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics," Energies, MDPI, vol. 10(11), pages 1-19, November.
    16. Ferrari, Francesco & Besio, Giovanni & Cassola, Federico & Mazzino, Andrea, 2020. "Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea," Energy, Elsevier, vol. 190(C).
    17. Hu, Shuai & Xiang, Yue & Huo, Da & Jawad, Shafqat & Liu, Junyong, 2021. "An improved deep belief network based hybrid forecasting method for wind power," Energy, Elsevier, vol. 224(C).
    18. Wen-Ko Hsu & Chung-Kee Yeh, 2021. "Offshore Wind Potential of West Central Taiwan: A Case Study," Energies, MDPI, vol. 14(12), pages 1-20, June.
    19. Lattawan Niyomtham & Charoenporn Lertsathittanakorn & Jompob Waewsak & Yves Gagnon, 2022. "Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand," Energies, MDPI, vol. 15(9), pages 1-19, April.
    20. Shea, Ryan P. & Ramgolam, Yatindra Kumar, 2019. "Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius," Renewable Energy, Elsevier, vol. 132(C), pages 1415-1424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6604-:d:462027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.