IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2648-d786919.html
   My bibliography  Save this article

A Study on Available Power Estimation Algorithm and Its Validation

Author

Listed:
  • Dongmyoung Kim

    (Department of Integrated Energy and Infra System, Kangwon National University, Engineering Building 6-319, 1 Gangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea)

  • Taesu Jeon

    (Department of Integrated Energy and Infra System, Kangwon National University, Engineering Building 6-319, 1 Gangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea)

  • Insu Paek

    (Department of Mechatronics Engineering, Kangwon National University, Engineering Building 6-319, 1 Gangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea)

  • Daeyoung Kim

    (R and D Institute, Hanjin Ind. Co., Ltd., 1981-48, Yangsan-daero, Habuk-myeon, Yangsan-si 50509, Gyeongsangnam-do, Korea)

Abstract

Three different algorithms that can be used to estimate the available power of a wind turbine are investigated and validated in this study. The first method is the simplest and using the power curve with the measured nacelle wind speed. The other two are to estimate the equivalent wind speed first without using the measured Nacelle wind speed and to estimate the available power from the rotor power equation. The two methods are different in that the second method is to use the drive-train model to estimate the rotor torque but the third method is to use a simplified equation to avoid sharp peaks in the wind speed estimation. Simulations were performed to validate the constructed available power estimation algorithms with the measured data of a 2 MW target wind turbine. It was found from the validation that the third available power estimation algorithm works properly and is closer to the power actually generated from the wind turbine than the other methods considered. In addition, the third algorithm that showed the best performance was further validated with the DPPT (demanded power point tracking) operation with Matlab/Simulink environment. It was found from the simulation that the third algorithm works well in the DPPT operation to estimate the available power of the wind turbine.

Suggested Citation

  • Dongmyoung Kim & Taesu Jeon & Insu Paek & Daeyoung Kim, 2022. "A Study on Available Power Estimation Algorithm and Its Validation," Energies, MDPI, vol. 15(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2648-:d:786919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaodong Wang & Yunong Liu & Luyao Wang & Lin Ding & Hui Hu, 2019. "Numerical Study of Nacelle Wind Speed Characteristics of a Horizontal Axis Wind Turbine under Time-Varying Flow," Energies, MDPI, vol. 12(20), pages 1-19, October.
    2. Hansen, Anca D. & Sørensen, Poul & Iov, Florin & Blaabjerg, Frede, 2006. "Centralised power control of wind farm with doubly fed induction generators," Renewable Energy, Elsevier, vol. 31(7), pages 935-951.
    3. Ebrahimi, F.M. & Khayatiyan, A. & Farjah, E., 2016. "A novel optimizing power control strategy for centralized wind farm control system," Renewable Energy, Elsevier, vol. 86(C), pages 399-408.
    4. Jonathan J. Buonocore & Ernani Choma & Aleyda H. Villavicencio & John D. Spengler & Dinah A. Koehler & John S. Evans & Jos Lelieveld & Piet Klop & Ramon Sanchez-Pina, 2019. "Metrics for the sustainable development goals: renewable energy and transportation," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    5. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2011. "Second law analysis of wind turbine power plants: Cesme, Izmir example," Energy, Elsevier, vol. 36(5), pages 2535-2542.
    6. Yuan Song & Insu Paek, 2020. "Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model," Energies, MDPI, vol. 13(24), pages 1-15, December.
    7. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    8. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.
    9. Jonathan J. Buonocore & Ernani Choma & Aleyda H. Villavicencio & John D. Spengler & Dinah A. Koehler & John S. Evans & Jos Lelieveld & Piet Klop & Ramon Sanchez-Pina, 2019. "Correction: Metrics for the sustainable development goals: renewable energy and transportation," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-2, December.
    10. Stoyan Kanev & Edwin Bot & Jack Giles, 2020. "Wind Farm Loads under Wake Redirection Control," Energies, MDPI, vol. 13(16), pages 1-15, August.
    11. XU Jianzhong & Albina Assenova & Vasilii Erokhin, 2018. "Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    12. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    2. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    3. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    4. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    5. Rohit Agrawal & Abhijit Majumdar & Kirty Majumdar & Rakesh D. Raut & Balkrishna E. Narkhede, 2022. "Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3669-3687, November.
    6. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    7. Manu, Emmanuel Kwaku & Chen, George S. & Asante, Dennis, 2022. "Regional heterogeneities in the absorptive capacity of renewable energy deployment in Africa," Renewable Energy, Elsevier, vol. 193(C), pages 554-564.
    8. Susana Silva & Erika Laranjeira & Isabel Soares, 2021. "Health Benefits from Renewable Electricity Sources: A Review," Energies, MDPI, vol. 14(20), pages 1-17, October.
    9. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    10. Singh, Devesh, 2022. "Renewable energy, urban primacy, foreign direct investment, and value-added in European regions," Renewable Energy, Elsevier, vol. 186(C), pages 547-561.
    11. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Molly E. Brown, 2021. "Metrics to Accelerate Private Sector Investment in Sustainable Development Goal 2—Zero Hunger," Sustainability, MDPI, vol. 13(11), pages 1-6, May.
    13. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    14. Van-Hai Bui & Akhtar Hussain & Woon-Gyu Lee & Hak-Man Kim, 2019. "Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints," Energies, MDPI, vol. 12(24), pages 1-19, December.
    15. Wędzik, Andrzej & Siewierski, Tomasz & Szypowski, Michał, 2016. "A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization," Applied Energy, Elsevier, vol. 182(C), pages 525-538.
    16. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
    17. Dong, Zhuojia & Yu, Xianyu & Chang, Ching-Ter & Zhou, Dequn & Sang, Xiuzhi, 2022. "How does feed-in tariff and renewable portfolio standard evolve synergistically? An integrated approach of tripartite evolutionary game and system dynamics," Renewable Energy, Elsevier, vol. 186(C), pages 864-877.
    18. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    20. Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2648-:d:786919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.