A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ozgur Danisman & Umay Uzunoglu Kocer, 2019. "Construction of a semi-Markov model for the performance of a football team in the presence of missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(3), pages 559-576, February.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- I. Votsi & A. Brouste, 2019. "Confidence interval for the mean time to failure in semi-Markov models: an application to wind energy production," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(10), pages 1756-1773, July.
- Laura Casula & Guglielmo D'Amico & Giovanni Masala & Filippo Petroni, 2020. "Performance estimation of a wind farm with a dependence structure between electricity price and wind speed," The World Economy, Wiley Blackwell, vol. 43(10), pages 2803-2822, October.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Yuan Song & Insu Paek, 2020. "Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model," Energies, MDPI, vol. 13(24), pages 1-15, December.
- Riccardo De Blasis, 2020. "The price leadership share: a new measure of price discovery in financial markets," Annals of Finance, Springer, vol. 16(3), pages 381-405, September.
- Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
- Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
- D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2014. "Wind speed and energy forecasting at different time scales: A nonparametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 59-66.
- Adrian Raftery & Simon Tavaré, 1994. "Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 179-199, March.
- Luis Lopez & Ingrid Oliveros & Luis Torres & Lacides Ripoll & Jose Soto & Giovanny Salazar & Santiago Cantillo, 2020. "Prediction of Wind Speed Using Hybrid Techniques," Energies, MDPI, vol. 13(23), pages 1-13, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- D’Amico, Guglielmo & De Blasis, Riccardo & Petroni, Filippo, 2023. "The Mixture Transition Distribution approach to networks: Evidence from stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
- Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laura Casula & Guglielmo D'Amico & Giovanni Masala & Filippo Petroni, 2020. "Performance estimation of a wind farm with a dependence structure between electricity price and wind speed," The World Economy, Wiley Blackwell, vol. 43(10), pages 2803-2822, October.
- Laura Casula & Guglielmo D’Amico & Giovanni Masala & Filippo Petroni, 2020. "Performance estimation of photovoltaic energy production," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 267-285, December.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
- Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
- Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
- Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019.
"On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting,"
Energy Economics, Elsevier, vol. 79(C), pages 171-182.
- Bartosz Uniejewski & Grzegorz Marcjasz & Rafal Weron, 2017. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting. Part II – Probabilistic forecasting," HSC Research Reports HSC/17/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020.
"PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices,"
Energies, MDPI, vol. 13(14), pages 1-19, July.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA forecast averaging - predicting day-ahead and intraday electricity prices," WORking papers in Management Science (WORMS) WORMS/20/02, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
- Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019.
"Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
- Bartosz Uniejewski & Grzegorz Marcjasz & Rafal Weron, 2018. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," HSC Research Reports HSC/18/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
- Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
- Bohlayer, Markus & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2020. "Energy-intense production-inventory planning with participation in sequential energy markets," Applied Energy, Elsevier, vol. 258(C).
- Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023.
"Distributional neural networks for electricity price forecasting,"
Energy Economics, Elsevier, vol. 125(C).
- Grzegorz Marcjasz & Micha{l} Narajewski & Rafa{l} Weron & Florian Ziel, 2022. "Distributional neural networks for electricity price forecasting," Papers 2207.02832, arXiv.org, revised Dec 2022.
- Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
- Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).
- Jethro Browell, 2018. "Risk Constrained Trading Strategies for Stochastic Generation with a Single-Price Balancing Market," Energies, MDPI, vol. 11(6), pages 1-17, May.
- Emma Viviani & Luca Di Persio & Matthias Ehrhardt, 2021. "Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case," Energies, MDPI, vol. 14(2), pages 1-33, January.
More about this item
Keywords
wind farm performance; electricity price; multivariate Markov chain; mixture transition distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:388-:d:478903. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.