IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp1415-1424.html
   My bibliography  Save this article

Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius

Author

Listed:
  • Shea, Ryan P.
  • Ramgolam, Yatindra Kumar

Abstract

As climate change accelerates, many countries most vulnerable to its effects are leading by example by transitioning to renewable energy economies. One example is in Mauritius, a small island developing state with admirable goals of increasing renewable generation but struggling to achieve them cost-effectively. This research assists Mauritius by identifying local renewable resource potential and island specific costs to determine the levelized cost of electricity (LCOE) of various technologies. Solar and offshore wind are determined to yield above average energy potential, wave, sugar cane trash, and municipal solid waste-to-energy average potential, onshore wind below average potential, and hydropower and geothermal unfeasible potential. Each renewable energy system's energy potential is directly tied to its capacity factor, which was determined to be the most impactful levelized cost of electricity (LCOE) variable in Mauritius. The LCOE for bagasse generation, landfill gas-to-energy, and utility-scale solar PV are below coal's LCOE, fuel oil's operating costs, and the average consumer cost of electricity. Therefore, even without considering fossil fuels' indirect environmental and health costs, multiple renewable energy technologies are shown to be more cost-competitive than fossil fuels in Mauritius. Policy makers in Mauritius can utilize this direct LCOE analysis to confidently prioritize cost-effective solutions.

Suggested Citation

  • Shea, Ryan P. & Ramgolam, Yatindra Kumar, 2019. "Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius," Renewable Energy, Elsevier, vol. 132(C), pages 1415-1424.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1415-1424
    DOI: 10.1016/j.renene.2018.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811831084X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    2. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    3. Dhunny, A.Z. & Lollchund, M.R. & Rughooputh, S.D.D.V., 2017. "Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD)," Renewable Energy, Elsevier, vol. 101(C), pages 1-9.
    4. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harvey, L.D. Danny, 2020. "Clarifications of and improvements to the equations used to calculate the levelized cost of electricity (LCOE), and comments on the weighted average cost of capital (WACC)," Energy, Elsevier, vol. 207(C).
    2. Sagel, Victor N. & Rouwenhorst, Kevin H.R. & Faria, Jimmy A., 2022. "Green ammonia enables sustainable energy production in small island developing states: A case study on the island of Curaçao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Yuan, Guanghui & Yang, Weixin, 2019. "Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA)," Energy, Elsevier, vol. 183(C), pages 926-935.
    4. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.
    6. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    7. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei & Ling, Lanning, 2023. "Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system," Energy, Elsevier, vol. 280(C).
    8. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    9. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    10. Timmons, D. & Dhunny, A.Z. & Elahee, K. & Havumaki, B. & Howells, M. & Khoodaruth, A. & Lema-Driscoll, A.K. & Lollchund, M.R. & Ramgolam, Y.K. & Rughooputh, S.D.D.V. & Surroop, D., 2019. "Cost minimization for fully renewable electricity systems: A Mauritius case study," Energy Policy, Elsevier, vol. 133(C).
    11. Kosmadakis, Ioannis E. & Elmasides, Costas & Koulinas, Georgios & Tsagarakis, Konstantinos P., 2021. "Energy unit cost assessment of six photovoltaic-battery configurations," Renewable Energy, Elsevier, vol. 173(C), pages 24-41.
    12. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    13. Victor N. Sagel & Kevin H. R. Rouwenhorst & Jimmy A. Faria, 2022. "Renewable Electricity Generation in Small Island Developing States: The Effect of Importing Ammonia," Energies, MDPI, vol. 15(9), pages 1-18, May.
    14. Maurizio Filippo Acciarri & Silvia Checola & Paolo Galli & Giacomo Magatti & Silvana Stefani, 2021. "Water Resource Management and Sustainability: A Case Study in Faafu Atoll in the Republic of Maldives," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    15. Sahebi, Iman Ghasemian & Mosayebi, Alireza & Masoomi, Behzad & Marandi, Fatemeh, 2022. "Modeling the enablers for blockchain technology adoption in renewable energy supply chain," Technology in Society, Elsevier, vol. 68(C).
    16. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    3. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    4. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    5. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    6. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    7. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    8. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    9. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    10. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    11. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    12. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    13. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    14. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    15. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    16. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    17. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    18. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    19. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    20. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1415-1424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.