IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6530-d460025.html
   My bibliography  Save this article

Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park

Author

Listed:
  • Krzysztof Nowak

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Sławomir Rabczak

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

In winter, for our own safety, as well as for the comfort of the user, we are obliged to remove or mitigate the defects related to the accumulation of snow and ice on flat surfaces, such as: pavements, stairs, driveways, parking lots, roofs, squares, or sports fields. Snow and ice from these surfaces can be removed by a variety of methods. Chemical, mechanical, or heating methods are most often used. Mechanical and manual methods cannot always be used. They also often do not allow the complete removal of snow and ice from the surface. In chemical methods, the chemicals used can have a negative impact on the environment and the surface itself. Heating external surfaces using electric heating cables or liquid-filled pipes is one of the safest and most effective ways to remove snow and ice from the available methods. The article presents a technical concept of a car park heating system with the use of various heating systems. The main thesis of the work is the possibility of using heating systems to maintain the quality of external parking spaces in winter. The authors tried to prove that it is possible to use a number of heating systems based on commonly known energy carriers for this purpose. The concept was made for the conditions prevailing in Poland. The systems were compared in financial and ecological terms. The following systems were analyzed: electric heating, heating with the use of a heat pump with a vertical ground heat exchanger, and liquid heating with various heat sources (including heat from the district heating network, hard coal boiler, biomass boiler, fuel oil boiler, natural gas boiler). From a cognitive point of view, it was interesting to examine whether the proposed installation with a heat pump is technically feasible and economically and ecologically justified.

Suggested Citation

  • Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6530-:d:460025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
    2. Thomas Kemmler & Bernd Thomas, 2020. "Design of Heat-Pump Systems for Single- and Multi-Family Houses using a Heuristic Scheduling for the Optimization of PV Self-Consumption," Energies, MDPI, vol. 13(5), pages 1-18, March.
    3. Li, Han & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Jia, Jie & Ye, Tianzhen & Zou, Lanjun, 2017. "Modelling of AQI related to building space heating energy demand based on big data analytics," Applied Energy, Elsevier, vol. 203(C), pages 57-71.
    4. Richard Thygesen, 2017. "An Analysis of Different Solar-Assisted Heating Systems and Their Effect on the Energy Performance of Multifamily Buildings—A Swedish Case," Energies, MDPI, vol. 10(1), pages 1-16, January.
    5. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2020. "Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland," Energies, MDPI, vol. 13(2), pages 1-16, January.
    6. Brita Bye & Taran Fæhn & Orvika Rosnes, 2015. "Residental energy efficiency and European carbon policies A CGE-analysis with bottom-up information on energy efficiency technologies," Discussion Papers 817, Statistics Norway, Research Department.
    7. Dimitris Al. Katsaprakakis, 2020. "Computational Simulation and Dimensioning of Solar-Combi Systems for Large-Size Sports Facilities: A Case Study for the Pancretan Stadium, Crete, Greece," Energies, MDPI, vol. 13(9), pages 1-30, May.
    8. Hanne Kauko & Daniel Rohde & Armin Hafner, 2020. "Local Heating Networks with Waste Heat Utilization: Low or Medium Temperature Supply?," Energies, MDPI, vol. 13(4), pages 1-16, February.
    9. Jiang, Bing & Sun, Zhenqing & Liu, Meiqin, 2010. "China's energy development strategy under the low-carbon economy," Energy, Elsevier, vol. 35(11), pages 4257-4264.
    10. Hannah Licharz & Peter Rösmann & Manuel S. Krommweh & Ehab Mostafa & Wolfgang Büscher, 2020. "Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses," Energies, MDPI, vol. 13(3), pages 1-20, February.
    11. Jochen Conrad & Simon Greif, 2019. "Modelling Load Profiles of Heat Pumps," Energies, MDPI, vol. 12(4), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurullah Kayaci & Baris Burak Kanbur, 2023. "Numerical and Economic Analysis of Hydronic-Heated Anti-Icing Solutions on Underground Park Driveways," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Operacz & Bogusław Bielec & Barbara Tomaszewska & Michał Kaczmarczyk, 2020. "Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland," Energies, MDPI, vol. 13(15), pages 1-18, July.
    2. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    3. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    4. Tobias Hübner, 2020. "Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry," Energies, MDPI, vol. 13(7), pages 1-43, April.
    5. Lam, J. & Cheung, L. & Han, Y. & Wang, S., 2018. "China’s Response to Nuclear Safety Post-Fukushima: Genuine or Rhetoric?," Cambridge Working Papers in Economics 1866, Faculty of Economics, University of Cambridge.
    6. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    7. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    8. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    9. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    10. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    11. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    12. Xiaoye Jin & Meiying Li & Fansheng Meng, 2019. "Comprehensive Evaluation of the New Energy Power Generation Development at the Regional Level: An Empirical Analysis from China," Energies, MDPI, vol. 12(23), pages 1-15, December.
    13. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.
    14. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    15. Ali, Ghaffar & Abbas, Sawaid & Mueen Qamer, Faisal, 2013. "How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 632-638.
    16. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    17. Li, Yajun & Xia, Yan, 2013. "DES/CCHP: The best utilization mode of natural gas for China’s low carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 477-483.
    18. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    19. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    20. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6530-:d:460025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.