IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics096014812401379x.html
   My bibliography  Save this article

The role of utilizing artificial intelligence and renewable energy in reaching sustainable development goals

Author

Listed:
  • Talaat, Fatma M.
  • Kabeel, A.E.
  • Shaban, Warda M.

Abstract

Many nations want to use only renewable energy by 2050. Given the recent rapid expansion in RE use in the global energy mix and its progressive impact on the global energy sector, the evaluation and analysis of Renewable Energy's impact on achieving sustainable development goals is insufficient. Wind energy could be renewable. For smart grid supply-and-demand issues, wind power forecasting is critical. One of the biggest challenges of wind energy is its significant fluctuation and intermittent nature, which makes forecasting difficult. This study's goal is to develop data-driven models to predict wind speed and power. This paper uses Machine Learning (ML) and Deep Learning (DL) to improve a wind speed prediction and recommendation system for wind turbine power production using site climatological data. This system optimizes turbine use by selecting the right number of turbines to operate solely based on the required energy, which is related to wind power and speed, and recommends the best power station location to determine the best turbine run time. The Proposed Enhanced Recommendation System (PERS) includes the Wind Speed Prediction Module (WSPM), Wind Speed vs. Power Consumption Calculation (WSPC), and Recommendation Module (RM). Test results showed the suggested method works in run time. The XGBoost or Random Forest regressor predicted 15-day power output with 94 % accuracy and 6 % mean average percentage error.

Suggested Citation

  • Talaat, Fatma M. & Kabeel, A.E. & Shaban, Warda M., 2024. "The role of utilizing artificial intelligence and renewable energy in reaching sustainable development goals," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s096014812401379x
    DOI: 10.1016/j.renene.2024.121311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401379X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoli Tang & Xinhua Tao & Yuanyuan Wei & Ziyue Tong & Fangzheng Zhu & Han Lin, 2022. "Analysis and Prediction of Wind Speed Effects in East Asia and the Western Pacific Based on Multi-Source Data," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    2. Ding, Xiaosong & Feng, Chong & Yu, Peiling & Li, Kaiwen & Chen, Xi, 2023. "Gradient boosting decision tree in the prediction of NOx emission of waste incineration," Energy, Elsevier, vol. 264(C).
    3. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    4. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    5. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    6. Konstantinos Moustris & Dimitrios Zafirakis, 2023. "Day-Ahead Forecasting of the Theoretical and Actual Wind Power Generation in Energy-Constrained Island Systems," Energies, MDPI, vol. 16(12), pages 1-18, June.
    7. Abdulrahman A. Alghamdi & Abdelhameed Ibrahim & El-Sayed M. El-Kenawy & Abdelaziz A. Abdelhamid, 2023. "Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-30, January.
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    9. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    10. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    11. Rahman, Tasmeea & Othman, Mohammad Lutfi & Mohd Noor, Samsul Bahari & Binti Wan Ahmad, Wan Fatinhamamah & Sulaima, Mohamad Fani, 2024. "Methods and attributes for customer-centric dynamic electricity tariff design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Xu, Weifeng & Liu, Pan & Cheng, Lei & Zhou, Yong & Xia, Qian & Gong, Yu & Liu, Yini, 2021. "Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy," Renewable Energy, Elsevier, vol. 163(C), pages 772-782.
    13. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    14. Zhang, Lixia & Sun, Huaping & Pu, Tianlong & Sun, Hui & Chen, Zhenling, 2024. "Do green finance and hi-tech innovation facilitate sustainable development? Evidence from the Yangtze River Economic Belt," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1430-1442.
    15. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    16. Xie, Yuying & Li, Chaoshun & Tang, Geng & Liu, Fangjie, 2021. "A novel deep interval prediction model with adaptive interval construction strategy and automatic hyperparameter tuning for wind speed forecasting," Energy, Elsevier, vol. 216(C).
    17. Xinwen Ma & Yan Chen & Wenwu Yi & Zedong Wang, 2021. "Prediction of Extreme Wind Speed for Offshore Wind Farms Considering Parametrization of Surface Roughness," Energies, MDPI, vol. 14(4), pages 1-15, February.
    18. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    19. Manuel Jaramillo & Wilson Pavón & Lisbeth Jaramillo, 2024. "Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review," Data, MDPI, vol. 9(1), pages 1-23, January.
    20. Luis Lopez & Ingrid Oliveros & Luis Torres & Lacides Ripoll & Jose Soto & Giovanny Salazar & Santiago Cantillo, 2020. "Prediction of Wind Speed Using Hybrid Techniques," Energies, MDPI, vol. 13(23), pages 1-13, November.
    21. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    22. Saeed Salah & Husain R. Alsamamra & Jawad H. Shoqeir, 2022. "Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms," Energies, MDPI, vol. 15(7), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
    3. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    4. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    5. Li, Yanhui & Sun, Kaixuan & Yao, Qi & Wang, Lin, 2024. "A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm," Energy, Elsevier, vol. 286(C).
    6. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    7. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    8. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    9. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    10. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    11. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    12. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    13. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    14. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
    15. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    16. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    17. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    18. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    19. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    20. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s096014812401379x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.