IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p528-d134029.html
   My bibliography  Save this article

Ultra-Short-Term Forecast of Photovoltaic Output Power under Fog and Haze Weather

Author

Listed:
  • Weiliang Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources of North China Electric Power University, Baoding 071003, China)

  • Changliang Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources of North China Electric Power University, Baoding 071003, China)

  • Yongjun Lin

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources of North China Electric Power University, Baoding 071003, China)

  • Liangyu Ma

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources of North China Electric Power University, Baoding 071003, China)

  • Feng Xiong

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources of North China Electric Power University, Baoding 071003, China)

  • Jintuo Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources of North China Electric Power University, Baoding 071003, China)

Abstract

Fog and haze (F-H) weather has been occurring frequently in China since 2012, which affects the output power of photovoltaic (PV) generation dramatically by directly weakening solar irradiance and aggravating dust deposition on PV panels. The ultra-short-term forecast method presented in this study would help to fully reflect the dual effects of F-H on PV output power. Aiming at the weakening effect on solar irradiance, estimation models of atmospheric aerosol optical depth (AOD) based on particle matter (PM) concentration were established with machine learning (ML) method, and the total irradiance received by PV panels was calculated based on simplified REST2 model. Aiming at the aggravating effect on dust deposition on PV panels, sample set of “cumulative PM concentration—efficiency reduction” was constructed through special measurement experiments, then the efficiency reduction under certain dust deposition state was estimated with similar-day choosing method. Based on photoelectric conversion model, PM concentration prediction and weather forecast information, ultra-short-term forecast of PV output power was realized. Experimental results proved the validity and feasibility of the presented forecast method.

Suggested Citation

  • Weiliang Liu & Changliang Liu & Yongjun Lin & Liangyu Ma & Feng Xiong & Jintuo Li, 2018. "Ultra-Short-Term Forecast of Photovoltaic Output Power under Fog and Haze Weather," Energies, MDPI, vol. 11(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:528-:d:134029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yajing Gao & Huaxin Cheng & Jing Zhu & Haifeng Liang & Peng Li, 2016. "The Optimal Dispatch of a Power System Containing Virtual Power Plants under Fog and Haze Weather," Sustainability, MDPI, vol. 8(1), pages 1-22, January.
    2. Klugmann-Radziemska, Ewa, 2015. "Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland," Renewable Energy, Elsevier, vol. 78(C), pages 418-426.
    3. Kaldellis, J.K. & Kapsali, M., 2011. "Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements," Energy, Elsevier, vol. 36(8), pages 5154-5161.
    4. Yajing Gao & Jing Zhu & Huaxin Cheng & Fushen Xue & Qing Xie & Peng Li, 2016. "Study of Short-Term Photovoltaic Power Forecast Based on Error Calibration under Typical Climate Categories," Energies, MDPI, vol. 9(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Yao, Wanxiang & Zheng, Zhimiao & Zhao, Jun & Wang, Xiao & Wang, Yan & Li, Xianli & Fu, Jidong, 2020. "The factor analysis of fog and haze under the coupling of multiple factors -- taking four Chinese cities as an example," Energy Policy, Elsevier, vol. 137(C).
    3. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    4. Yosui Miyazaki & Yusuke Kameda & Junji Kondoh, 2019. "A Power-Forecasting Method for Geographically Distributed PV Power Systems using Their Previous Datasets," Energies, MDPI, vol. 12(24), pages 1-14, December.
    5. Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    5. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    6. Chen, Jinxin & Pan, Guobing & Ouyang, Jing & Ma, Jin & Fu, Lei & Zhang, Libin, 2020. "Study on impacts of dust accumulation and rainfall on PV power reduction in East China," Energy, Elsevier, vol. 194(C).
    7. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    8. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Yajing Gao & Yanping Sun & Xiaodan Wang & Feifan Chen & Ali Ehsan & Hongmei Li & Hong Li, 2017. "Multi-Objective Optimized Aggregation of Demand Side Resources Based on a Self-organizing Map Clustering Algorithm Considering a Multi-Scenario Technique," Energies, MDPI, vol. 10(12), pages 1-20, December.
    10. Yajing Gao & Fushen Xue & Wenhai Yang & Yanping Sun & Yongjian Sun & Haifeng Liang & Peng Li, 2017. "A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service," Energies, MDPI, vol. 10(9), pages 1-21, August.
    11. Xingcai, Li & Kun, Niu, 2018. "Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law," Renewable Energy, Elsevier, vol. 123(C), pages 634-638.
    12. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    13. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    14. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    15. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    16. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    17. Zhang, Jie & Zhou, Chuande & Tang, Yike & Zheng, Fuzhong & Meng, Minghui & Miao, Chunzheng, 2018. "Criteria for particles to be levitated and to move continuously on traveling-wave electric curtain for dust mitigation on solar panels," Renewable Energy, Elsevier, vol. 119(C), pages 410-420.
    18. Picotti, G. & Borghesani, P. & Cholette, M.E. & Manzolini, G., 2018. "Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2343-2357.
    19. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    20. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:528-:d:134029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.