IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v180y2016icp392-401.html
   My bibliography  Save this article

Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines

Author

Listed:
  • Li, Yanting
  • He, Yong
  • Su, Yan
  • Shu, Lianjie

Abstract

Both linear and nonlinear models have been proposed for forecasting the power output of photovoltaic systems. Linear models are simple to implement but less flexible. Due to the stochastic nature of the power output of PV systems, nonlinear models tend to provide better forecast than linear models. Motivated by this, this paper suggests a fairly simple nonlinear regression model known as multivariate adaptive regression splines (MARS), as an alternative to forecasting of solar power output. The MARS model is a data-driven modeling approach without any assumption about the relationship between the power output and predictors. It maintains simplicity of the classical multiple linear regression (MLR) model while possessing the capability of handling nonlinearity. It is simpler in format than other nonlinear models such as ANN, k-nearest neighbors (KNN), classification and regression tree (CART), and support vector machine (SVM). The MARS model was applied on the daily output of a grid-connected 2.1kW PV system to provide the 1-day-ahead mean daily forecast of the power output. The comparisons with a wide variety of forecast models show that the MARS model is able to provide reliable forecast performance.

Suggested Citation

  • Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
  • Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:392-401
    DOI: 10.1016/j.apenergy.2016.07.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    2. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
    3. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
    4. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    5. Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
    6. Chang, Li-Yen, 2014. "Analysis of bilateral air passenger flows: A non-parametric multivariate adaptive regression spline approach," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 123-130.
    7. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    8. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    9. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    10. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    11. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    12. Prema, V. & Rao, K. Uma, 2015. "Development of statistical time series models for solar power prediction," Renewable Energy, Elsevier, vol. 83(C), pages 100-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.
    2. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    3. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    4. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    5. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    6. Sen Wang & Yonghui Sun & Yan Zhou & Rabea Jamil Mahfoud & Dongchen Hou, 2019. "A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM," Energies, MDPI, vol. 13(1), pages 1-17, December.
    7. Wang, Guochang & Su, Yan & Shu, Lianjie, 2016. "One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models," Renewable Energy, Elsevier, vol. 96(PA), pages 469-478.
    8. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    9. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    11. Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
    12. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    13. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    14. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    15. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    16. Ferlito, S. & Adinolfi, G. & Graditi, G., 2017. "Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production," Applied Energy, Elsevier, vol. 205(C), pages 116-129.
    17. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    18. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    19. Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
    20. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:392-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.