IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5407-d429107.html
   My bibliography  Save this article

Adaptive Equivalent Consumption Minimization Strategy for Hybrid Heavy-Duty Truck Based on Driving Condition Recognition and Parameter Optimization

Author

Listed:
  • Pei Zhang

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China)

  • Xianpan Wu

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China)

  • Changqing Du

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China)

  • Hongming Xu

    (Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Huawu Wang

    (Dongfeng Commercial Vehicle Technical Center of DFCV, Wuhan 430056, China)

Abstract

The accurate determination and dynamic adjustment of key control parameters are challenges for equivalent consumption minimization strategy (ECMS) to be implemented in real-time control of hybrid electric vehicles. An adaptive real-time ECMS is proposed for hybrid heavy-duty truck in this paper. Three efforts have been made in this study. First, six kinds of typical driving cycle for hybrid heavy-duty truck are obtained by hierarchical clustering algorithm, and a driving condition recognition (DCR) algorithm based on a neural network is put forward. Second, particle swarm optimization (PSO) is applied to optimize three key parameters of ECMS under a specified driving cycle, including equivalent factor, scale factor of penalty function, and vehicle speed threshold for engine start-up. Finally, combining all the above two efforts, a novel adaptive ECMS based on DCR and key parameter optimization of ECMS by PSO is presented and validated through numerical simulation. The simulation results manifest that proposed adaptive ECMS can further improve the fuel economy of a hybrid heavy-duty truck while keeping the battery charge-sustainability, compared with ECMS and PSO-ECMS under a composite driving cycle.

Suggested Citation

  • Pei Zhang & Xianpan Wu & Changqing Du & Hongming Xu & Huawu Wang, 2020. "Adaptive Equivalent Consumption Minimization Strategy for Hybrid Heavy-Duty Truck Based on Driving Condition Recognition and Parameter Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5407-:d:429107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2019. "Optimal sizing and adaptive energy management of a novel four-wheel-drive hybrid powertrain," Energy, Elsevier, vol. 187(C).
    2. Shuxian Li & Minghui Hu & Changchao Gong & Sen Zhan & Datong Qin, 2018. "Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means," Energies, MDPI, vol. 11(6), pages 1-16, June.
    3. Yang, Ye & Zhang, Youtong & Tian, Jingyi & Li, Tao, 2020. "Adaptive real-time optimal energy management strategy for extender range electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    5. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    6. Xixue Liu & Datong Qin & Shaoqian Wang, 2019. "Minimum Energy Management Strategy of Equivalent Fuel Consumption of Hybrid Electric Vehicle Based on Improved Global Optimization Equivalent Factor," Energies, MDPI, vol. 12(11), pages 1-17, May.
    7. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    8. Chen, Syuan-Yi & Hung, Yi-Hsuan & Wu, Chien-Hsun & Huang, Siang-Ting, 2015. "Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization," Applied Energy, Elsevier, vol. 160(C), pages 132-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muataz Abotabik & Richard T. Meyer, 2021. "Switched Optimal Control of a Heavy-Duty Hybrid Vehicle," Energies, MDPI, vol. 14(20), pages 1-20, October.
    2. Sven Schulze & Günter Feyerl & Stefan Pischinger, 2023. "Advanced ECMS for Hybrid Electric Heavy-Duty Trucks with Predictive Battery Discharge and Adaptive Operating Strategy under Real Driving Conditions," Energies, MDPI, vol. 16(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).
    2. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Zhang, Zhendong & He, Hongwen & Guo, Jinquan & Han, Ruoyan, 2020. "Velocity prediction and profile optimization based real-time energy management strategy for Plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 280(C).
    4. Zhou, Wei & Chen, Yaoqi & Zhai, Haoran & Zhang, Weigang, 2021. "Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SoC planning," Energy, Elsevier, vol. 220(C).
    5. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    6. Hou, Daizheng & Sun, Qun & Bao, Chunjiang & Cheng, Xingqun & Guo, Hongqiang & Zhao, Ying, 2019. "An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    8. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    9. Yang, Chao & Liu, Kaijia & Jiao, Xiaohong & Wang, Weida & Chen, Ruihu & You, Sixiong, 2022. "An adaptive firework algorithm optimization-based intelligent energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 239(PB).
    10. Tian, Yang & Zhao, Yin & Wang, Zhong & Zhang, Yahui & Miao, Yusen & Zhang, Lipeng & Wen, Guilin & Zhang, Nong, 2024. "Non-dominated sorting artificial rabbit multi-objective sizing optimization for a conceptual powertrain of a 6 × 4 battery electric tractor truck," Energy, Elsevier, vol. 304(C).
    11. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    12. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
    13. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    14. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    15. Shi, Man & He, Hongwen & Li, Jianwei & Han, Mo & Jia, Chunchun, 2021. "Multi-objective tradeoff optimization of predictive adaptive cruising control for autonomous electric buses: A cyber-physical-energy system approach," Applied Energy, Elsevier, vol. 300(C).
    16. Kong, Yan & Xu, Nan & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2021. "Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted," Energy, Elsevier, vol. 236(C).
    17. Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
    18. Yin, Cheng & Zeng, Xiangrui & Yin, Zhouping, 2024. "An improved data-driven predictive optimal control approach for designing hybrid electric vehicle energy management strategies," Applied Energy, Elsevier, vol. 375(C).
    19. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    20. Ye Yang & Youtong Zhang & Jingyi Tian & Si Zhang, 2018. "Research on a Plug-In Hybrid Electric Bus Energy Management Strategy Considering Drivability," Energies, MDPI, vol. 11(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5407-:d:429107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.