IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2076-d235832.html
   My bibliography  Save this article

Minimum Energy Management Strategy of Equivalent Fuel Consumption of Hybrid Electric Vehicle Based on Improved Global Optimization Equivalent Factor

Author

Listed:
  • Xixue Liu

    (State Key Laboratory of Mechanical Transmissions, School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Datong Qin

    (State Key Laboratory of Mechanical Transmissions, School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Shaoqian Wang

    (State Key Laboratory of Mechanical Transmissions, School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

Abstract

A parallel hybrid electric vehicle (PHEV) is used to investigate the fuel economy effect of the equivalent fuel consumption minimization strategy (ECMS) with the equivalent factor as the core, where the equivalent factor is the conversion coefficient between fuel thermal energy and electric energy. In the conventional ECMS strategy, the battery cannot continue to discharge when the state of charge (SOC) is lower than the target value. At this time, the motor mainly works in the battery charging mode, making it difficult to adjust the engine operating point to the high-efficiency zone during the acceleration process. To address this problem, a relationship model of the battery SOC, vehicle acceleration a , and equivalent factor S was established. When the battery SOC is lower than the target value and the vehicle demand torque is high, which makes the engine operating point deviate from the high-efficiency zone, the time that the motor spends in the power generation mode during the driving process is reduced. This enables the motor to drive the vehicle at the appropriate time to reduce the engine output torque, and helps the engine operate in the high-efficiency zone. The correction function under US06 condition was optimized by genetic algorithm (GA). The best equivalent factor MAP was obtained with acceleration a and battery SOC as independent variables, and the improved global optimal equivalent factor of ECMS was established and simulated offline. Simulation results show that compared with conventional ECMS, the battery still has positive power output even when the SOC is less than the target value. The SOC is close to the target value after the cycle condition, and fuel economy improved by 1.88%; compared with the rule-based energy management control strategies, fuel economy improved by 10.17%. These results indicate the effectiveness of the proposed energy management strategy.

Suggested Citation

  • Xixue Liu & Datong Qin & Shaoqian Wang, 2019. "Minimum Energy Management Strategy of Equivalent Fuel Consumption of Hybrid Electric Vehicle Based on Improved Global Optimization Equivalent Factor," Energies, MDPI, vol. 12(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2076-:d:235832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    2. Sun, Chao & Sun, Fengchun & He, Hongwen, 2017. "Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1644-1653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aimin Du & Yaoyi Chen & Dongxu Zhang & Yeyang Han, 2021. "Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-18, April.
    2. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    3. Laeun Kwon & Dae-Seung Cho & Changsun Ahn, 2021. "Degradation-Conscious Equivalent Consumption Minimization Strategy for a Fuel Cell Hybrid System," Energies, MDPI, vol. 14(13), pages 1-14, June.
    4. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    5. Wang, Hao & He, Hongwen & Bai, Yunfei & Yue, Hongwei, 2022. "Parameterized deep Q-network based energy management with balanced energy economy and battery life for hybrid electric vehicles," Applied Energy, Elsevier, vol. 320(C).
    6. Chien-Hsun Wu & Yong-Xiang Xu, 2019. "The Optimal Control of Fuel Consumption for a Heavy-Duty Motorcycle with Three Power Sources Using Hardware-in-the-Loop Simulation," Energies, MDPI, vol. 13(1), pages 1-16, December.
    7. Liu, Yonggang & Huang, Bin & Yang, Yang & Lei, Zhenzhen & Zhang, Yuanjian & Chen, Zheng, 2022. "Hierarchical speed planning and energy management for autonomous plug-in hybrid electric vehicle in vehicle-following environment," Energy, Elsevier, vol. 260(C).
    8. Piotr Bera, 2019. "Development of Engine Efficiency Characteristic in Dynamic Working States," Energies, MDPI, vol. 12(15), pages 1-14, July.
    9. Pei Zhang & Xianpan Wu & Changqing Du & Hongming Xu & Huawu Wang, 2020. "Adaptive Equivalent Consumption Minimization Strategy for Hybrid Heavy-Duty Truck Based on Driving Condition Recognition and Parameter Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
    10. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings," Energies, MDPI, vol. 14(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    2. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    4. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    5. Li, Guozhen & Zhang, Zhenyu & Shi, Wankai & Li, Wenyong, 2023. "Energy management strategy and simulation analysis of a hybrid train based on a comprehensive efficiency optimization," Applied Energy, Elsevier, vol. 349(C).
    6. Guanghai Zhu & Jianbin Lin & Qingwu Liu & Hongwen He, 2019. "Research on the Energy-Saving Strategy of Path Planning for Electric Vehicles Considering Traffic Information," Energies, MDPI, vol. 12(19), pages 1-14, September.
    7. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    8. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2022. "Energy consumption characteristics based driving conditions construction and prediction for hybrid electric buses energy management," Energy, Elsevier, vol. 245(C).
    9. Du, Yi & Cui, Naxin & Cui, Wei & Li, Tao & Ren, Fei & Zhang, Chenghui, 2023. "AGRU and convex optimization based energy management for plug-in hybrid electric bus considering battery aging," Energy, Elsevier, vol. 277(C).
    10. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    11. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Lin, Xinyou & Xia, Yutian & Huang, Wei & Li, Hailin, 2021. "Trip distance adaptive power prediction control strategy optimization for a Plug-in Fuel Cell Electric Vehicle," Energy, Elsevier, vol. 224(C).
    13. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    14. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    16. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    17. Pei Zhang & Wangda Lu & Changqing Du & Jie Hu & Fuwu Yan, 2024. "A Comparative Study of Vehicle Velocity Prediction for Hybrid Electric Vehicles Based on a Neural Network," Mathematics, MDPI, vol. 12(4), pages 1-27, February.
    18. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    19. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    20. Fabio Orecchini & Adriano Santiangeli & Fabrizio Zuccari & Adriano Alessandrini & Fabio Cignini & Fernando Ortenzi, 2021. "Real Drive Truth Test of the Toyota Yaris Hybrid 2020 and Energy Analysis Comparison with the 2017 Model," Energies, MDPI, vol. 14(23), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2076-:d:235832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.