IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4866-d415014.html
   My bibliography  Save this article

Assessment of Multiple Anaerobic Co-Digestions and Related Microbial Community of Molasses with Rice-Alcohol Wastewater

Author

Listed:
  • Sohail Khan

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China)

  • Fuzhi Lu

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China)

  • Qiong Jiang

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China)

  • Chengjian Jiang

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China)

  • Muhammad Kashif

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China)

  • Peihong Shen

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China)

Abstract

Molasses is a highly dense and refined byproduct produced in the sugarcane industry, and it contains high amounts of degradable compounds. Through bioconversion, these compounds can be transformed into renewable products. However, the involved biological process is negatively influenced by the high chemical oxygen demand (COD) of molasses and ion concentration. The co-digestion of molasses with rice-alcohol wastewater (RAW) was compared with its mono-digestion at an increasing organic loading rate (OLR). Both processes were assessed by detecting the COD removal rate, the methane contents of biogas, and the structure and composition of microbial communities at different stages. Results showed that the co-digestion is stable up to a maximum OLR of 16 g COD L −1 d −1 , whereas after the acclimatization phase, the mono-digestion process was disturbed two times, which occurred at a maximum OLR of 9 and 10 g COD L −1 d −1 . The volatile fatty acids (VFAs) observed were 2059.66 mg/L and 1896.9 mg/L, which in mono-digestion causes the inhibition at maximum OLRs. In the co-digestion process, the concomitant COD removal rates and methane content recorded was 90.72 ± 0.63% 64.47% ± 0.59% correspondingly. While in the mono-digestion process, high COD removal rate and methane contents observed were 89.29 ± 0.094% and 61.37 ± 1.06% respectively. From the analysis of microbial communities, it has been observed that both the bacterial and archaeal communities respond differently at unlike stages. However, in both processes, Propionibacteriaceae was the most abundant family in the bacterial communities, whereas Methanosaetaceae was abundant in the archaeal communities. From the current study, it has been concluded that that rice-alcohol wastewater could be a good co-substrate for the anaerobic digestion of molasses in terms of COD removal rate and methane contents production, that could integrate molasses into progressive biogas production with high OLR.

Suggested Citation

  • Sohail Khan & Fuzhi Lu & Qiong Jiang & Chengjian Jiang & Muhammad Kashif & Peihong Shen, 2020. "Assessment of Multiple Anaerobic Co-Digestions and Related Microbial Community of Molasses with Rice-Alcohol Wastewater," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4866-:d:415014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shah, Fayyaz Ali & Mahmood, Qaisar & Rashid, Naim & Pervez, Arshid & Raja, Iftikhar Ahmad & Shah, Mohammad Maroof, 2015. "Co-digestion, pretreatment and digester design for enhanced methanogenesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 627-642.
    2. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    3. Fuli Yang & Wenzhe Li & Mingchao Sun & Qiang Li & Mengyi Wang & Yong Sun, 2018. "Improved Buffering Capacity and Methane Production by Anaerobic Co-Digestion of Corn Stalk and Straw Depolymerization Wastewater," Energies, MDPI, vol. 11(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    2. Jinming Liu & Changhao Zeng & Na Wang & Jianfei Shi & Bo Zhang & Changyu Liu & Yong Sun, 2021. "Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics," Energies, MDPI, vol. 14(5), pages 1-17, March.
    3. Cristian Bernabé Arenas Sevillano & Marco Chiappero & Xiomar Gomez & Silvia Fiore & E. Judith Martínez, 2020. "Improving the Anaerobic Digestion of Wine-Industry Liquid Wastes: Treatment by Electro-Oxidation and Use of Biochar as an Additive," Energies, MDPI, vol. 13(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    2. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    3. Liang, Yi & Yu, Jiadong & Yao, Zonglu & Sun, Yuxuan & Zhao, Lixin, 2024. "Performance, interaction, and metabolic pathway of novel dry–wet anaerobic digestion for treating high-solid agricultural waste," Energy, Elsevier, vol. 304(C).
    4. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    5. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    7. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    8. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    9. Córdova, Olivia & Santis, Julissa & Ruiz-Fillipi, Gonzalo & Zuñiga, María Elvira & Fermoso, Fernando G. & Chamy, Rolando, 2018. "Microalgae digestive pretreatment for increasing biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2806-2813.
    10. Ioanna Michailidou & Ifigeneia Grigoriadou & Themistoklis Sfetsas & Christos Vlachokostas & Georgios Arsenos & Aristotelis Lymperopoulos, 2024. "Enhancing Biogas Production: An Assessment of Pasteurization Effects on Poultry, Swine, Bovine Manure and Food Waste Substrates," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    11. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    12. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Stefano Papirio & Silvio Matassa & Francesco Pirozzi & Giovanni Esposito, 2020. "Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste," Energies, MDPI, vol. 13(11), pages 1-13, June.
    14. Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
    15. Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
    16. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Valenti, Francesca & Selvaggi, Roberta & Pecorino, Biagio & Porto, Simona MC., 2023. "Bioeconomy for sustainable development of biomethane sector: Potential and challenges for agro-industrial by-products," Renewable Energy, Elsevier, vol. 215(C).
    18. Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
    19. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    20. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4866-:d:415014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.