IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7130-d1459704.html
   My bibliography  Save this article

Enhancing Biogas Production: An Assessment of Pasteurization Effects on Poultry, Swine, Bovine Manure and Food Waste Substrates

Author

Listed:
  • Ioanna Michailidou

    (Laboratory of Farm Animal Reproduction and Animal Breeding, Division of Animal Science, Department of Agriculture, International Hellenic University, 57400 Thessaloniki, Greece)

  • Ifigeneia Grigoriadou

    (Research & Development, Quality Control and Testing Services, QLAB Private Company, 57008 Thessaloniki, Greece)

  • Themistoklis Sfetsas

    (Research & Development, Quality Control and Testing Services, QLAB Private Company, 57008 Thessaloniki, Greece)

  • Christos Vlachokostas

    (Sustainability Engineering Laboratory, School of Mechanical Engineering, Faculty of Engineering, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece)

  • Georgios Arsenos

    (Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Aristotelis Lymperopoulos

    (Laboratory of Farm Animal Reproduction and Animal Breeding, Division of Animal Science, Department of Agriculture, International Hellenic University, 57400 Thessaloniki, Greece)

Abstract

Within the evolving regulatory landscape of the European Union concerning animal by-product (ABP) management within the circular economy framework, this study explores the concurrent objectives of safeguarding public health and environmental integrity and maximizing final product value. Anaerobic digestion (AD) emerges as a holistic solution for ABP management, addressing sanitation concerns while enhancing end-product quality. Through laboratory-scale experimentation, the AD process applied to four substrates—poultry manure, swine manure, cattle manure, and food waste—is scrutinized. Prior to AD, pasteurization at 70 °C for 60 min ensures microbial safety. Subsequently, four experimental AD cycles compare pasteurized and unpasteurized substrates. Results highlight the efficacy of pasteurization in sanitizing final products across all substrates, emphasizing its pivotal role in product safety. However, pasteurization’s impact on system performance varies. While enhancing biogas yield from animal waste notably, its influence on food waste biogas production is less pronounced, indicating substrate-specific dynamics. This study offers insights into optimizing ABP management strategies, emphasizing the interplay between pasteurization, substrate characteristics, and AD performance. Such insights are crucial for advancing sustainable practices in the circular economy paradigm, balancing environmental stewardship with economic viability.

Suggested Citation

  • Ioanna Michailidou & Ifigeneia Grigoriadou & Themistoklis Sfetsas & Christos Vlachokostas & Georgios Arsenos & Aristotelis Lymperopoulos, 2024. "Enhancing Biogas Production: An Assessment of Pasteurization Effects on Poultry, Swine, Bovine Manure and Food Waste Substrates," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7130-:d:1459704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Liang, Yi & Yu, Jiadong & Yao, Zonglu & Sun, Yuxuan & Zhao, Lixin, 2024. "Performance, interaction, and metabolic pathway of novel dry–wet anaerobic digestion for treating high-solid agricultural waste," Energy, Elsevier, vol. 304(C).
    3. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    4. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    5. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    8. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    9. Rajesh Nandi & Chayan Kumer Saha & Shiplu Sarker & Md. Sanaul Huda & Md. Monjurul Alam, 2020. "Optimization of Reactor Temperature for Continuous Anaerobic Digestion of Cow Manure: Bangladesh Perspective," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    10. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Stefano Papirio & Silvio Matassa & Francesco Pirozzi & Giovanni Esposito, 2020. "Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste," Energies, MDPI, vol. 13(11), pages 1-13, June.
    12. Sohail Khan & Fuzhi Lu & Qiong Jiang & Chengjian Jiang & Muhammad Kashif & Peihong Shen, 2020. "Assessment of Multiple Anaerobic Co-Digestions and Related Microbial Community of Molasses with Rice-Alcohol Wastewater," Energies, MDPI, vol. 13(18), pages 1-16, September.
    13. Murillo-Alvarado, Pascual Eduardo & Ponce-Ortega, José María, 2022. "An optimization approach to increase the human development index through a biogas supply chain in a developing region," Renewable Energy, Elsevier, vol. 190(C), pages 347-357.
    14. Mohamed El Amine DAHOU & Mohammed HADJ KOUIDER & Siham Dehmani & Abdelmadjid HABCHI & Said SLIMANI, 2023. "Experimental Study of Increase of Biogas Production from Lagoon Station's Sludge by Alkaline Pretreatment," Energy & Environment, , vol. 34(5), pages 1492-1508, August.
    15. Wu, Di & Li, Lei & Zhao, Xiaofei & Peng, Yun & Yang, Pingjin & Peng, Xuya, 2019. "Anaerobic digestion: A review on process monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 1-12.
    16. Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
    17. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Robert Hren & Aleksandra Petrovič & Lidija Čuček & Marjana Simonič, 2020. "Determination of Various Parameters during Thermal and Biological Pretreatment of Waste Materials," Energies, MDPI, vol. 13(9), pages 1-15, May.
    19. Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
    20. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7130-:d:1459704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.