IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1352-1359.html
   My bibliography  Save this article

Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste

Author

Listed:
  • Kainthola, Jyoti
  • Kalamdhad, Ajay S.
  • Goud, Vaibhav V.

Abstract

Biogas production from agricultural residue by anaerobic digestion is the most favourable option for providing sustainable energy and reducing the environmental pollution. The experimental methane potential of co-digested rice straw and food waste were measured for different carbon to nitrogen (C/N) ratios in 1 L anaerobic reactor. Co-digesting rice straw with food waste for C/N 25, 30 and 35 almost showed the similar methane yield 294.17 ± 3.78 mL/g-VSadded, with an increase of 134.53 mL/g-VSadded (71.09%) than mono-digestion. After optimizing the C/N ratio for co-digestion, interactive effect of initial pH and food/microorganism (F/M) ratio were also explored in this study using central composite design – response surface methodology (CCD-RSM). Results from the optimization study showed significant interaction, and validation experiment for optimum condition (C/N 30, pH 7.32, F/M 1.87) showed a methane yield of 323.78 mL/g-VSadded (94.41%), 166.54 mL/g-VSadded higher than the mono-digestion (control).

Suggested Citation

  • Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1352-1359
    DOI: 10.1016/j.renene.2019.10.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zerrin Günkaya & Alp Özdemir & Aysun Özkan & Müfide Banar, 2016. "Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey," Sustainability, MDPI, vol. 8(11), pages 1-14, October.
    2. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    3. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    4. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    5. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    6. Alissara Reungsang & Sakchai Pattra & Sureewan Sittijunda, 2012. "Optimization of Key Factors Affecting Methane Production from Acidic Effluent Coming from the Sugarcane Juice Hydrogen Fermentation Process," Energies, MDPI, vol. 5(11), pages 1-12, November.
    7. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    2. Graciela M. L. Ruiz-Aguilar & Juan H. Martínez-Martínez & Rogelio Costilla-Salazar & Sarai Camarena-Martínez, 2023. "Using Central Composite Design to Improve Methane Production from Anaerobic Digestion of Tomato Plant Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    3. Xiaojun Liu & Arnaud Coutu & Stéphane Mottelet & André Pauss & Thierry Ribeiro, 2023. "Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches," Energies, MDPI, vol. 16(3), pages 1-31, January.
    4. Oumoul-Kairou Karidio Daouda Idrissa & David Tsuanyo & Rodrigue Adjoumani Kouakou & Yacouba Konaté & Boukary Sawadogo & Kouassi Benjamin Yao, 2024. "Analysis of the criteria for improving biogas production: focus on anaerobic digestion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27083-27110, November.
    5. Kimberley E. Miller & Tess Herman & Dimas A. Philipinanto & Sarah C. Davis, 2021. "Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    6. Zhan, Yuanhang & Zhu, Jun & Schrader, Leland C. & Wang, Dongyi, 2023. "Modeling and optimization of bioenergy production from co-digestion of poultry litter with wheat straw in anaerobic sequencing batch reactor: Response surface methodology and artificial neural network," Applied Energy, Elsevier, vol. 345(C).
    7. Bao, Rui & Wei, Yufang & Guan, Ruolin & Li, Xiujin & Lu, Xuebin & Rong, Siyuan & Zuo, Xiaoyu & Yuan, Hairong, 2023. "High-solids anaerobic co-digestion performances and microbial community dynamics in co-digestion of different mixing ratios with food waste and highland barley straw," Energy, Elsevier, vol. 262(PB).
    8. Giovanni Gadaleta & Francesco Todaro & Annamaria Giuliano & Sabino De Gisi & Michele Notarnicola, 2024. "Co-Treatment of Food Waste and Municipal Sewage Sludge: Technical and Environmental Review of Biological and Thermal Technologies," Clean Technol., MDPI, vol. 6(3), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Wu, Di & Li, Lei & Zhao, Xiaofei & Peng, Yun & Yang, Pingjin & Peng, Xuya, 2019. "Anaerobic digestion: A review on process monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 1-12.
    3. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Stefano Papirio & Silvio Matassa & Francesco Pirozzi & Giovanni Esposito, 2020. "Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste," Energies, MDPI, vol. 13(11), pages 1-13, June.
    6. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    8. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    9. Katarzyna Kotarska & Wojciech Dziemianowicz & Anna Świerczyńska, 2021. "The Effect of Detoxification of Lignocellulosic Biomass for Enhanced Methane Production," Energies, MDPI, vol. 14(18), pages 1-15, September.
    10. Wipa Prapinagsorn & Sureewan Sittijunda & Alissara Reungsang, 2017. "Co-Digestion of Napier Grass and Its Silage with Cow Dung for Methane Production," Energies, MDPI, vol. 10(10), pages 1-20, October.
    11. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    12. Robert Hren & Aleksandra Petrovič & Lidija Čuček & Marjana Simonič, 2020. "Determination of Various Parameters during Thermal and Biological Pretreatment of Waste Materials," Energies, MDPI, vol. 13(9), pages 1-15, May.
    13. Scano, Efisio Antonio & Grosso, Massimiliano & Pistis, Agata & Carboni, Gianluca & Cocco, Daniele, 2021. "An in-depth analysis of biogas production from locally agro-industrial by-products and residues. An Italian case," Renewable Energy, Elsevier, vol. 179(C), pages 308-318.
    14. Shakourifar, Niloofar & Krisa, David & Eskicioglu, Cigdem, 2020. "Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination," Renewable Energy, Elsevier, vol. 154(C), pages 117-127.
    15. Rajput, Asad Ayub & Zeshan, & Hassan, Muhammad, 2021. "Enhancing biogas production through co-digestion and thermal pretreatment of wheat straw and sunflower meal," Renewable Energy, Elsevier, vol. 168(C), pages 1-10.
    16. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    17. Charalampos Toufexis & Dimitrios-Orfeas Makris & Christos Vlachokostas & Alexandra V. Michailidou & Christos Mertzanakis & Athanasia Vachtsiavanou, 2024. "Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach," Sustainability, MDPI, vol. 16(15), pages 1-28, July.
    18. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    20. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1352-1359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.