IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000270.html
   My bibliography  Save this article

Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment

Author

Listed:
  • Yang, Luyao
  • Li, Xiujin
  • Yuan, Hairong
  • Yan, Beibei
  • Yang, Gaixiu
  • Lu, Yao
  • Li, Juan
  • Zuo, Xiaoyu

Abstract

Pretreatment is necessary for improving biodegradability and biomethane production from lignocellulosic materials such as corn straw (CS). In this study, freezing-thawing (FT) method was combined with KOH alkaline pretreatment technology to form a new CS pretreatment that was proposed to enhance anaerobic digestion (AD) performance. The results showed that among all pretreatment conditions, the −20 °C + 20 °C + KOH pretreatment group showed the best results, in which the biomethane production represented by the unit volatile solids (VS) was 274 mL⋅g−1VS−1 and the removal rate of VS was 58.5%, which were respectively 39.8% and 33.9% higher than that of untreated CS. Additionally, the reaction mechanism of this combined pretreatment was revealed by the internal structure and chemical bond changes of straw. The ultrastructure and crystal structure of the combined pretreatment showed greater destruction, and the chemical bonds were obviously damaged. This is due to the dissolution of the frozen crystalline structures inside the CS before and after FT. As the dissolution proceeds, the alkaline pretreatment reagent acts synergically on CS, resulting in the increase of methane production. The results indicated that the combination of FT and KOH alkaline pretreatment is a promising method that can greatly improve the biodegradability and methane production of CS.

Suggested Citation

  • Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000270
    DOI: 10.1016/j.energy.2023.126633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    2. Du, Jing & Qian, Yuting & Xi, Yonglan & Lü, Xiwu, 2019. "Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw," Renewable Energy, Elsevier, vol. 139(C), pages 261-267.
    3. Gao, Mingxue & Wang, Danmeng & Wang, Hui & Wang, Xiaojiao & Feng, Yongzhong, 2019. "Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 191-200.
    4. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    5. Tian, Shuang-Qi & Zhao, Ren-Yong & Chen, Zhi-Cheng, 2018. "Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 483-489.
    6. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinmeng Chen & Xiaotian Ma & Mengying Liang & Zhiwei Guo & Yafan Cai & Chenjie Zhu & Zhi Wang & Shilei Wang & Jingliang Xu & Hanjie Ying, 2024. "Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review," Waste, MDPI, vol. 2(4), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
    6. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    7. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Mohamed El Amine DAHOU & Mohammed HADJ KOUIDER & Siham Dehmani & Abdelmadjid HABCHI & Said SLIMANI, 2023. "Experimental Study of Increase of Biogas Production from Lagoon Station's Sludge by Alkaline Pretreatment," Energy & Environment, , vol. 34(5), pages 1492-1508, August.
    9. Scano, Efisio Antonio & Grosso, Massimiliano & Pistis, Agata & Carboni, Gianluca & Cocco, Daniele, 2021. "An in-depth analysis of biogas production from locally agro-industrial by-products and residues. An Italian case," Renewable Energy, Elsevier, vol. 179(C), pages 308-318.
    10. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Wang, Fang & Zhang, Deli & Shen, Xiuli & Liu, Weidong & Yi, Weiming & Li, Zhihe & Liu, Shanjian, 2019. "Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 158-166.
    12. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    13. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    15. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    16. Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    19. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    20. Luo, Yiping & Li, Dong & Li, Ruiling & Li, Zheng & Hu, Changwei & Liu, Xiaofeng, 2020. "Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.