IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4498-d406949.html
   My bibliography  Save this article

Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System

Author

Listed:
  • Paolo Conti

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Carlo Bartoli

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Alessandro Franco

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Daniele Testi

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

Abstract

Estimating and optimizing the dynamic performance of a heat pump system coupled to a building is a paramount yet complex task, especially under intermittent conditions. This paper presents the “hardware-in-the-loop” experimental campaign of an air-source heat pump serving a typical dwelling in Pisa (Italy). The experimental apparatus uses real pieces of equipment, together with a thermal load emulator controlled by a full energy dynamic simulation of the considered building. Real weather data are continuously collected and used to run the simulation. The experimental campaign was performed from November 2019 to February 2020, measuring the system performances under real climate and load dynamics. With a water set point equal to 40 °C, the average heat pump coefficient of performance was about 3, while the overall building-plant performance was around 2. The deviation between the two performance indexes can be ascribed to the continuous on-off signals given by the zone thermostat due to the oversized capacity of the heat emission system. The overall performance raised to 2.5 thanks to a smoother operation obtained with reduced supply temperature (35 °C) and fan coil speed. The paper demonstrates the relevance of a dynamic analysis of the building-HVAC system and the potential of the “hardware-in-the-loop” approach in assessing actual part-load heat pump performances with respect to the standard stationary methodology.

Suggested Citation

  • Paolo Conti & Carlo Bartoli & Alessandro Franco & Daniele Testi, 2020. "Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System," Energies, MDPI, vol. 13(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4498-:d:406949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    2. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    3. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    4. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    5. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    6. Wessam El-Baz & Lukas Mayerhofer & Peter Tzscheutschler & Ulrich Wagner, 2018. "Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis," Energies, MDPI, vol. 11(11), pages 1-15, November.
    7. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    8. Paolo Conti & Giovanni Lutzemberger & Eva Schito & Davide Poli & Daniele Testi, 2019. "Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening," Energies, MDPI, vol. 12(15), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    2. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    2. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "Energy Intensity Reduction in Large-Scale Non-Residential Buildings by Dynamic Control of HVAC with Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-17, June.
    3. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    4. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    5. Wilke, Christoph & Bensmann, Astrid & Martin, Stefan & Utz, Annika & Hanke-Rauschenbach, Richard, 2018. "Optimal design of a district energy system including supply for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 226(C), pages 129-144.
    6. Anna Vannahme & Jonas Busch & Mathias Ehrenwirth & Tobias Schrag, 2023. "Experimental Study of District Heating Substations in a Hardware-in-the-Loop Test Rig," Resources, MDPI, vol. 12(4), pages 1-13, March.
    7. Haase, Patrick & Thomas, Bernd, 2021. "Test and optimization of a control algorithm for demand-oriented operation of CHP units using hardware-in-the-loop," Applied Energy, Elsevier, vol. 294(C).
    8. Sebastian Kuboth & Theresa Weith & Florian Heberle & Matthias Welzl & Dieter Brüggemann, 2020. "Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation," Energies, MDPI, vol. 13(22), pages 1-17, November.
    9. Macedon Moldovan & Bogdan-Gabriel Burduhos & Ion Visa, 2021. "Yearly Electrical Energy Assessment of a Photovoltaic Platform/Geothermal Heat Pump Prosumer," Energies, MDPI, vol. 14(13), pages 1-18, June.
    10. Efkarpidis, Nikolaos A. & Vomva, Styliani A. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2022. "Optimal day-to-day scheduling of multiple energy assets in residential buildings equipped with variable-speed heat pumps," Applied Energy, Elsevier, vol. 312(C).
    11. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    12. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).
    13. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    14. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    18. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    19. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4498-:d:406949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.