IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i4p43-d1107820.html
   My bibliography  Save this article

Experimental Study of District Heating Substations in a Hardware-in-the-Loop Test Rig

Author

Listed:
  • Anna Vannahme

    (Institute of New Energy Systems, University of Applied Science Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

  • Jonas Busch

    (Institute of New Energy Systems, University of Applied Science Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

  • Mathias Ehrenwirth

    (Institute of New Energy Systems, University of Applied Science Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

  • Tobias Schrag

    (Institute of New Energy Systems, University of Applied Science Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

Abstract

This study compares two district heating substation systems for implementation in rural district heating networks with non-retrofitted single- and two-family houses. The aim is to determine which system has the potential to provide lower return temperatures and/or lower power peak demand. A hardware-in-the-loop-test rig was utilized to measure the two district heating substations under real operation conditions. This experimental study demonstrates that load balancing of the district heating network is attainable with the district heating substation with storage. This is especially advantageous when there is a high demand for domestic hot water. Overall, both systems yield comparable return temperatures.

Suggested Citation

  • Anna Vannahme & Jonas Busch & Mathias Ehrenwirth & Tobias Schrag, 2023. "Experimental Study of District Heating Substations in a Hardware-in-the-Loop Test Rig," Resources, MDPI, vol. 12(4), pages 1-13, March.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:4:p:43-:d:1107820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/4/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/4/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2010. "Improved district heating substation efficiency with a new control strategy," Applied Energy, Elsevier, vol. 87(6), pages 1996-2004, June.
    2. Tahiri, Abdelkarim & Smith, Kevin Michael & Thorsen, Jan Eric & Hviid, Christian Anker & Svendsen, Svend, 2023. "Staged control of domestic hot water storage tanks to support district heating efficiency," Energy, Elsevier, vol. 263(PB).
    3. Wessam El-Baz & Lukas Mayerhofer & Peter Tzscheutschler & Ulrich Wagner, 2018. "Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Conti & Carlo Bartoli & Alessandro Franco & Daniele Testi, 2020. "Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System," Energies, MDPI, vol. 13(17), pages 1-18, September.
    2. Haase, Patrick & Thomas, Bernd, 2021. "Test and optimization of a control algorithm for demand-oriented operation of CHP units using hardware-in-the-loop," Applied Energy, Elsevier, vol. 294(C).
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Muniak, Damian Piotr, 2014. "A new methodology to determine the pre-setting of the control valve in a heating installation. A general model," Applied Energy, Elsevier, vol. 135(C), pages 35-42.
    5. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    6. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    7. Anna Vannahme & Mathias Ehrenwirth & Tobias Schrag, 2021. "Enhancement of a District Heating Substation as Part of a Low-Investment Optimization Strategy for District Heating Systems," Resources, MDPI, vol. 10(5), pages 1-17, May.
    8. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    11. Heng Chen & Zhen Qi & Qiao Chen & Yunyun Wu & Gang Xu & Yongping Yang, 2018. "Modified High Back-Pressure Heating System Integrated with Raw Coal Pre-Drying in Combined Heat and Power Unit," Energies, MDPI, vol. 11(9), pages 1-16, September.
    12. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    13. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    14. Ziemele, Jelena & Cilinskis, Einars & Blumberga, Dagnija, 2018. "Pathway and restriction in district heating systems development towards 4th generation district heating," Energy, Elsevier, vol. 152(C), pages 108-118.
    15. Yan, Aibin & Zhao, Jun & An, Qingsong & Zhao, Yulong & Li, Hailong & Huang, Yrjö Jun, 2013. "Hydraulic performance of a new district heating systems with distributed variable speed pumps," Applied Energy, Elsevier, vol. 112(C), pages 876-885.
    16. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    17. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    18. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    19. Licklederer, Thomas & Zinsmeister, Daniel & Lukas, Lorenz & Speer, Fabian & Hamacher, Thomas & Perić, Vedran S., 2024. "Control of bidirectional prosumer substations in smart thermal grids: A weighted proportional-integral control approach," Applied Energy, Elsevier, vol. 354(PA).
    20. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:4:p:43-:d:1107820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.