IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp544-555.html
   My bibliography  Save this article

Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

Author

Listed:
  • Ommen, Torben
  • Thorsen, Jan Eric
  • Markussen, Wiebke Brix
  • Elmegaard, Brian

Abstract

The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat and power (CHP) and central heat pumps (HPs). The analysis focussed on the characteristic heat demands of newly build multi-story buildings and the results were based on the ratio of the individual demands compared to the total. It was found that the optimal return temperature was dependent on the forward temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (−) to 4.7 (−) for equipment with realistic component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found for extraction CHP, were ULTDH with booster HPs resulted in decreasing COSP of 20%.

Suggested Citation

  • Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:544-555
    DOI: 10.1016/j.energy.2017.05.165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Heat pumps in combined heat and power systems," Energy, Elsevier, vol. 76(C), pages 989-1000.
    2. Köfinger, M. & Basciotti, D. & Schmidt, R.R. & Meissner, E. & Doczekal, C. & Giovannini, A., 2016. "Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies," Energy, Elsevier, vol. 110(C), pages 95-104.
    3. Münster, Marie & Morthorst, Poul Erik & Larsen, Helge V. & Bregnbæk, Lars & Werling, Jesper & Lindboe, Hans Henrik & Ravn, Hans, 2012. "The role of district heating in the future Danish energy system," Energy, Elsevier, vol. 48(1), pages 47-55.
    4. Aviel Verbruggen, 2007. "Combined Heat and Power (CHP) essentials," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(1), pages 1-16.
    5. Schicktanz, M.D. & Wapler, J. & Henning, H.-M., 2011. "Primary energy and economic analysis of combined heating, cooling and power systems," Energy, Elsevier, vol. 36(1), pages 575-585.
    6. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    7. Aviel Verbruggen, 2007. "Qualifying Combined Heat and Power (CHP) activity," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(1), pages 36-52.
    8. Sørensen Torekov, Mikkel & Bahnsen, Niels & Qvale, Bjørn, 2007. "The relative competitive positions of the alternative means for domestic heating," Energy, Elsevier, vol. 32(5), pages 627-633.
    9. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    10. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    11. Brand, Marek & Rosa, Alessandro Dalla & Svendsen, Svend, 2014. "Energy-efficient and cost-effective in-house substations bypass for improving thermal and DHW (domestic hot water) comfort in bathrooms in low-energy buildings supplied by low-temperature district hea," Energy, Elsevier, vol. 67(C), pages 256-267.
    12. Wilby, Mark Richard & Rodríguez González, Ana Belén & Vinagre Díaz, Juan José, 2014. "Empirical and dynamic primary energy factors," Energy, Elsevier, vol. 73(C), pages 771-779.
    13. Aviel Verbruggen, 2007. "Quantifying Combined Heat and Power (CHP) activity," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(1), pages 17-35.
    14. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    15. Jensen, Jonas K. & Ommen, Torben & Markussen, Wiebke B. & Elmegaard, Brian, 2017. "Design of serially connected district heating heat pumps utilising a geothermal heat source," Energy, Elsevier, vol. 137(C), pages 865-877.
    16. Brand, Marek & Svendsen, Svend, 2013. "Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment," Energy, Elsevier, vol. 62(C), pages 311-319.
    17. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    18. Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
    19. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    20. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    2. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    3. Hanne Kauko & Daniel Rohde & Armin Hafner, 2020. "Local Heating Networks with Waste Heat Utilization: Low or Medium Temperature Supply?," Energies, MDPI, vol. 13(4), pages 1-16, February.
    4. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
    5. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    6. Kauko, Hanne & Kvalsvik, Karoline Husevåg & Rohde, Daniel & Hafner, Armin & Nord, Natasa, 2017. "Dynamic modelling of local low-temperature heating grids: A case study for Norway," Energy, Elsevier, vol. 139(C), pages 289-297.
    7. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    8. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    9. Kauko, Hanne & Kvalsvik, Karoline Husevåg & Rohde, Daniel & Nord, Natasa & Utne, Åmund, 2018. "Dynamic modeling of local district heating grids with prosumers: A case study for Norway," Energy, Elsevier, vol. 151(C), pages 261-271.
    10. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    11. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    12. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    13. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    14. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    15. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    16. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    17. Ziemele, Jelena & Talcis, Normunds & Osis, Ugis & Dace, Elina, 2021. "A methodology for selecting a sustainable development strategy for connecting low heat density consumers to a district heating system by cascading of heat carriers," Energy, Elsevier, vol. 230(C).
    18. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    19. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
    20. Østergaard, Dorte Skaarup & Svendsen, Svend, 2019. "Costs and benefits of preparing existing Danish buildings for low-temperature district heating," Energy, Elsevier, vol. 176(C), pages 718-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:544-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.