IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p554-d199610.html
   My bibliography  Save this article

Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+

Author

Listed:
  • Krzysztof Kosowski

    (Faculty of Mechanical Engineering, Gdansk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdansk, Poland)

  • Karol Tucki

    (Department of Organization and Production Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Marian Piwowarski

    (Faculty of Mechanical Engineering, Gdansk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdansk, Poland)

  • Robert Stępień

    (Faculty of Mechanical Engineering, Gdansk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdansk, Poland)

  • Olga Orynycz

    (Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Wojciech Włodarski

    (Faculty of Mechanical Engineering, Gdansk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdansk, Poland)

  • Anna Bączyk

    (Department of Hydraulic Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland)

Abstract

An analysis was carried out for different thermodynamic cycles of power plants with air turbines. Variants with regeneration and different cogeneration systems were considered. In the paper, we propose a new modification of a gas turbine cycle with the combustion chamber at the turbine outlet. A special air by-pass system of the combustor was applied and, in this way, the efficiency of the turbine cycle was increased by a few points. The proposed cycle equipped with a regenerator can provide higher efficiency than a classical gas turbine cycle with a regenerator. The best arrangements of combined air–steam cycles achieved very high values for overall cycle efficiency—that is, higher than 60%. An increase in efficiency to such degree would decrease fuel consumption, contribute to the mitigation of carbon dioxide emissions, and strengthen the sustainability of the region served by the power plant. This increase in efficiency might also contribute to the economic resilience of the area.

Suggested Citation

  • Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski & Anna Bączyk, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:554-:d:199610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    2. Angela Köppl & Stefan P. Schleicher, 2018. "What Will Make Energy Systems Sustainable?," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    3. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    4. Lior, Noam, 2012. "Sustainable energy development (May 2011) with some game-changers," Energy, Elsevier, vol. 40(1), pages 3-18.
    5. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    6. Kotowicz, Janusz & Brzęczek, Mateusz, 2018. "Analysis of increasing efficiency of modern combined cycle power plant: A case study," Energy, Elsevier, vol. 153(C), pages 90-99.
    7. Luigi Schirone & Filippo Pellitteri, 2017. "Energy Policies and Sustainable Management of Energy Sources," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    8. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.
    9. Yue, Ting & Lior, Noam, 2018. "Thermodynamic analysis of hybrid Rankine cycles using multiple heat sources of different temperatures," Applied Energy, Elsevier, vol. 222(C), pages 564-583.
    10. Zhang, Yifan & Li, Hongzhi & Han, Wanlong & Bai, Wengang & Yang, Yu & Yao, Mingyu & Wang, Yueming, 2018. "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, Elsevier, vol. 155(C), pages 1-14.
    11. Jonek Kowalska, Izabela, 2015. "Challenges for long-term industry restructuring in the Upper Silesian Coal Basin: What has Polish coal mining achieved and failed from a twenty-year perspective?," Resources Policy, Elsevier, vol. 44(C), pages 135-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Włodarski, Wojciech, 2019. "A model development and experimental verification for a vapour microturbine with a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    3. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Joanna Wichłacz, 2019. "The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner," Energies, MDPI, vol. 12(7), pages 1-12, April.
    4. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    5. Marian Piwowarski & Krzysztof Kosowski, 2020. "Advanced Turbine Cycles with Organic Media," Energies, MDPI, vol. 13(6), pages 1-11, March.
    6. Marcin Jamróz & Marian Piwowarski & Paweł Ziemiański & Gabriel Pawlak, 2021. "Technical and Economic Analysis of the Supercritical Combined Gas-Steam Cycle," Energies, MDPI, vol. 14(11), pages 1-21, May.
    7. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    8. Jemima Romola, C.V. & Karl J Samuel, P.K. & Megana Harshini, M. & Ganesh Moorthy, I. & Shyam Kumar, R. & Chinnathambi, Arunachalam & Salmen, Saleh H. & Alharbi, Sulaiman Ali & Karthikumar, Sankar, 2021. "Improvement of fuel properties of used palm oil derived biodiesel with butyl ferulate as an additive," Renewable Energy, Elsevier, vol. 175(C), pages 1052-1068.
    9. Wajs, Jan & Kura, Tomasz & Mikielewicz, Dariusz & Fornalik-Wajs, Elzbieta & Mikielewicz, Jarosław, 2022. "Numerical analysis of high temperature minichannel heat exchanger for recuperative microturbine system," Energy, Elsevier, vol. 238(PA).
    10. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "Thermodynamic Fundamentals for Fuel Production Management," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    11. Jan Wajs & Michał Bajor & Dariusz Mikielewicz, 2019. "Thermal-Hydraulic Studies on the Shell-and-Tube Heat Exchanger with Minijets," Energies, MDPI, vol. 12(17), pages 1-12, August.
    12. Karol Tucki & Olga Orynycz & Remigiusz Mruk & Antoni Świć & Katarzyna Botwińska, 2019. "Modeling of Biofuel’s Emissivity for Fuel Choice Management," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    13. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    14. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    15. Olga Orynycz & Karol Tucki & Miron Prystasz, 2020. "Implementation of Lean Management as a Tool for Decrease of Energy Consumption and CO 2 Emissions in the Fast Food Restaurant," Energies, MDPI, vol. 13(5), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    2. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    3. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    4. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    5. Saiful Irfan, 2023. "Analysis of Internal Boiler Water Treatment Maintenance System on Boiler Operation in KM. Bukit Raya," Technium, Technium Science, vol. 18(1), pages 18-22.
    6. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    7. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    8. Yi Zhang & Guanmin Zhang & Min Wei & Zhenqiang Gao & Maocheng Tian & Fang He, 2019. "Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    9. Aleksandra Kozłowska-Woszczycka & Katarzyna Pactwa, 2022. "Social License for Closure—A Participatory Approach to the Management of the Mine Closure Process," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    10. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    11. Stephan Schulmeister, 2020. "Fixing long-term price paths for fossil energy: the optimal incentive for limiting global warming," ICAE Working Papers 112, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
    12. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    13. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    14. Karol Król & Dorota Nowak-Woźny, 2021. "Application of the Mechanical and Pressure Drop Tests to Determine the Sintering Temperature of Coal and Biomass Ash," Energies, MDPI, vol. 14(4), pages 1-14, February.
    15. Abidin Kemeç & Ayşenur Tarakcıoglu Altınay, 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    16. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    17. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).
    18. Sergej Vojtovic & Alina Stundziene & Rima Kontautiene, 2018. "The Impact of Socio-Economic Indicators on Sustainable Consumption of Domestic Electricity in Lithuania," Sustainability, MDPI, vol. 10(2), pages 1-21, January.
    19. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    20. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:554-:d:199610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.