IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3826-d389748.html
   My bibliography  Save this article

Influence of Solar Position Calculation Methods Applied to Horizontal Single-Axis Solar Trackers on Energy Generation

Author

Listed:
  • Karen Barbosa de Melo

    (School of Electrical and Computer Engineering, University of Campinas, 400 Albert Einstein Avenue, Campinas 13083-852, Brazil
    These authors contributed equally to this work.)

  • Hugo Soeiro Moreira

    (School of Electrical and Computer Engineering, University of Campinas, 400 Albert Einstein Avenue, Campinas 13083-852, Brazil
    These authors contributed equally to this work.)

  • Marcelo Gradella Villalva

    (School of Electrical and Computer Engineering, University of Campinas, 400 Albert Einstein Avenue, Campinas 13083-852, Brazil
    These authors contributed equally to this work.)

Abstract

Photovoltaic systems have been explored as a solution to meet the growing demand for electricity from a clean and renewable source. However, the low energy conversion efficiency of photovoltaic panels is one of the critical factors that hinder the competitiveness of this energy source concerning the others. An effective way to improve the efficiency of photovoltaic systems is by using solar trackers. The tracking strategy most used in photovoltaic plants employs algorithms to calculate the Sun position. This work presents energy generation estimation applying six algorithms in horizontal single-axis solar tracking: the Solar Position Algorithm (SPA) and Grena 1–5 algorithms. The aim is to evaluate the influence of these algorithms on energy generation. For all simulated locations, comparing to an ideal scenario, the SPA presented the best energy generation results. However, the other algorithms showed negligible differences between themselves, which allows us to conclude that any of the algorithms can be used without implying significant energy losses. Thus, Grena 1–2 can be highlighted for easier implementation.

Suggested Citation

  • Karen Barbosa de Melo & Hugo Soeiro Moreira & Marcelo Gradella Villalva, 2020. "Influence of Solar Position Calculation Methods Applied to Horizontal Single-Axis Solar Trackers on Energy Generation," Energies, MDPI, vol. 13(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3826-:d:389748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    2. Hay, John E., 1993. "Calculating solar radiation for horizontal surfaces—II. Empirically based approaches," Renewable Energy, Elsevier, vol. 3(4), pages 365-372.
    3. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    4. Hay, John E., 1993. "Calculating solar radiation for horizontal surfaces—I. Theoretically based approaches," Renewable Energy, Elsevier, vol. 3(4), pages 357-364.
    5. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    6. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    7. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    8. Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cătălin Alexandru, 2023. "PV Tracking Systems," Energies, MDPI, vol. 16(6), pages 1-3, March.
    2. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    2. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    3. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    4. Hay, John E., 1993. "Solar radiation data: Validation and quality control," Renewable Energy, Elsevier, vol. 3(4), pages 349-355.
    5. Verena Weiler & Jonas Stave & Ursula Eicker, 2019. "Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application †," Energies, MDPI, vol. 12(3), pages 1-19, January.
    6. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.
    7. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    8. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    9. Achkari, O. & El Fadar, A. & Amlal, I. & Haddi, A. & Hamidoun, M. & Hamdoune, S., 2021. "A new sun-tracking approach for energy saving," Renewable Energy, Elsevier, vol. 169(C), pages 820-835.
    10. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    11. Huilin Shang & Wei Shen, 2023. "Design and Implementation of a Dual-Axis Solar Tracking System," Energies, MDPI, vol. 16(17), pages 1-13, August.
    12. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    13. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    14. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    15. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    16. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    17. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    18. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    19. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    20. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3826-:d:389748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.