IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5786-d1209930.html
   My bibliography  Save this article

PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping

Author

Listed:
  • Federico Minelli

    (Department of Industrial Engineering (DII), University of Naples Federico II, 80125 Naples, Italy)

  • Diana D’Agostino

    (Department of Industrial Engineering (DII), University of Naples Federico II, 80125 Naples, Italy)

  • Maria Migliozzi

    (Independent Researcher, 81054 San Prisco, Italy)

  • Francesco Minichiello

    (Department of Industrial Engineering (DII), University of Naples Federico II, 80125 Naples, Italy)

  • Pierpaolo D’Agostino

    (Department of Civil, Building and Environmental Engineering (DICEA), University of Naples Federico II, 80125 Naples, Italy)

Abstract

In this work, a flower-shaped shading system with integrated tracking photovoltaic, suitable for sustainable extensive urban coverages, is designed. Detailed photovoltaic energy yield simulations with a single-diode model approach are performed to disclose the potential of the proposed tracking photovoltaic shading device (PVSD). Simulations are performed with reference to a case study. A double-layer space truss is used to house the innovative modular photovoltaic tracking system, and the first application is envisaged for the coverage of a public market area of a sunny municipality in Southern Italy. By comparing it with the traditional photovoltaic fixed system, the results of the simulations show a steadier energy generation of the new PVSD, and it also provides better coverage with renewable energy during the hours of the day when the traditional system produces low electric energy. Lastly, an early interactive prototype of the PVSD system is presented. The tracking mechanism is carefully designed, 3D-printed at a small scale and tested with a motorized dynamic system controlled by a microcontroller board. The realization of the physical prototype and the engineering of the movement mechanism confirmed the feasibility and the correct functioning of the conceived system opening to real-scale applications.

Suggested Citation

  • Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5786-:d:1209930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    2. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    3. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    4. Tina, Giuseppe Marco & Gagliano, Salvina & Graditi, Giorgio & Merola, Angelo, 2012. "Experimental validation of a probabilistic model for estimating the double axis PV tracking energy production," Applied Energy, Elsevier, vol. 97(C), pages 990-998.
    5. Liu, Feng & van den Bergh, Jeroen C.J.M., 2020. "Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA," Energy Policy, Elsevier, vol. 138(C).
    6. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    7. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    8. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    9. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    10. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    11. Sumit Kalyan & Qian (Chayn) Sun, 2022. "Interrogating the Installation Gap and Potential of Solar Photovoltaic Systems Using GIS and Deep Learning," Energies, MDPI, vol. 15(10), pages 1-21, May.
    12. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    13. Dong, Jun & Jiang, Yuzheng & Liu, Dongran & Dou, Xihao & Liu, Yao & Peng, Shicheng, 2022. "Promoting dynamic pricing implementation considering policy incentives and electricity retailers’ behaviors: An evolutionary game model based on prospect theory," Energy Policy, Elsevier, vol. 167(C).
    14. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    15. Muñoz-Cerón, E. & Lomas, J.C. & Aguilera, J. & de la Casa, J., 2018. "Influence of Operation and Maintenance expenditures in the feasibility of photovoltaic projects: The case of a tracking pv plant in Spain," Energy Policy, Elsevier, vol. 121(C), pages 506-518.
    16. Freitas, Jader de Sousa & Cronemberger, Joára & Soares, Raí Mariano & Amorim, Cláudia Naves David, 2020. "Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug," Renewable Energy, Elsevier, vol. 160(C), pages 1468-1479.
    17. Sinke, Wim C., 2019. "Development of photovoltaic technologies for global impact," Renewable Energy, Elsevier, vol. 138(C), pages 911-914.
    18. Francesco Nicoletti & Cristina Carpino & Mario A. Cucumo & Natale Arcuri, 2020. "The Control of Venetian Blinds: A Solution for Reduction of Energy Consumption Preserving Visual Comfort," Energies, MDPI, vol. 13(7), pages 1-12, April.
    19. Silvia Erba & Lorenzo Pagliano, 2021. "Combining Sufficiency, Efficiency and Flexibility to Achieve Positive Energy Districts Targets," Energies, MDPI, vol. 14(15), pages 1-32, August.
    20. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    21. Marichell Zarzavilla & Andrea Quintero & Manuela Andrés Abellán & Francisco López Serrano & Miguel Chen Austin & Nathalia Tejedor-Flores, 2022. "Comparison of Environmental Impact Assessment Methods in the Assembly and Operation of Photovoltaic Power Plants: A Systematic Review in the Castilla—La Mancha Region," Energies, MDPI, vol. 15(5), pages 1-25, March.
    22. Guarino, Francesco & Cassarà, Pietro & Longo, Sonia & Cellura, Maurizio & Ferro, Erina, 2015. "Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm," Applied Energy, Elsevier, vol. 154(C), pages 380-391.
    23. Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.
    24. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2024. "Review and Evaluation of Multi-Agent Control Applications for Energy Management in Buildings," Energies, MDPI, vol. 17(19), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    2. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    3. Dong, Siyuan & Kremers, Enrique & Brucoli, Maria & Rothman, Rachael & Brown, Solomon, 2020. "Improving the feasibility of household and community energy storage: A techno-enviro-economic study for the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    5. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    6. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    7. Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    8. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    9. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    10. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    11. Sánchez-Aparicio, M. & Martín-Jiménez, J. & Del Pozo, S. & González-González, E. & Lagüela, S., 2021. "Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    13. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    14. Liu, Aaron & Miller, Wendy & Cholette, Michael E. & Ledwich, Gerard & Crompton, Glenn & Li, Yong, 2021. "A multi-dimension clustering-based method for renewable energy investment planning," Renewable Energy, Elsevier, vol. 172(C), pages 651-666.
    15. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    16. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    17. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    18. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    19. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    20. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5786-:d:1209930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.